a) Ta có: MK⊥AD(gt)
CD⊥AD(gt)
Do đó: MK//CD(Định lí 1 từ vuông góc tới song song)
Xét ΔAKM và ΔADC có
\(\widehat{MAK}\) chung
\(\widehat{AMK}=\widehat{ACD}\)(hai góc so le trong, MK//CD)
Do đó: ΔAKM∼ΔADC(g-g)
a) Ta có: MK⊥AD(gt)
CD⊥AD(gt)
Do đó: MK//CD(Định lí 1 từ vuông góc tới song song)
Xét ΔAKM và ΔADC có
\(\widehat{MAK}\) chung
\(\widehat{AMK}=\widehat{ACD}\)(hai góc so le trong, MK//CD)
Do đó: ΔAKM∼ΔADC(g-g)
bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)
a) chứng minh tứ giác bhkm là hình bình hành.
b) chứng minh tứ giác hmck là hình bình hành.
c) chứng minh h là trung điểm của ab .
d) chứng minh bc=2hk
Bài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.
a) Chứng minh OM =ON
b) Tứ giác AMCN là hình gì? Vì sao?
c) Chứng minh BN // DM và BN = DM
Bài 9. Cho hình bình hành ABCD . Trên đường chéo BD lấy hai điểm M và N sao cho: BN=DN=1/3BD
a) Chứng minh :tam giác AMB=tam giác CND
b)Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD , I là giao điểm của AM và BC . Chứng minh rằng: AM=2MI
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O .
Cho tam giác ABC vuông cân tại A có AB=8cm
a)Tính diện tích tam giác ABC
b)Trên cạnh BC lấy điểm M( khác B và C ), từ M lần lượt vẽ MH và MK vuông góc với cạnh AB và AC ( điểm H thuộc AB và điểm K thuộc AC )
CM: Tứ giác AHMK là Hình Chữ Nhật
c)Gọi D là điểm đối xứng của M qua K.CM: tứ giác AHKD là Hình Bình Hành
d)Gọi O là t/điểm của cạnh BC.CM: Tam Giác HOK vuông cân
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy bất kì điểm E ( E khác B,C). Từ E vẽ EM vuông góc với AB, EN vuông góc với AC (M thuộc AB, N thuộc AC). a:Chứng minh tứ giác AMEN là hình chữ nhật b: Chứng minh góc ANM=CAE c: Chứng minh khi E thay đổi trên cạnh BC thì Diện tích tam giác MBC+ Diện tích tam giác NBC không đổi. Mọi người giúp em nhanh với ạ. Em đang cần gấp
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy bất kì điểm E ( E khác B,C). Từ E vẽ EM vuông góc với AB, EN vuông góc với AC (M thuộc AB, N thuộc AC). a:Chứng minh tứ giác AMEN là hình chữ nhật b: Chứng minh góc ANM=CAE c: Chứng minh khi E thay đổi trên cạnh BC thì Diện tích tam giác MBC+ Diện tích tam giác NBC không đổi
Cho tam giác ABC vuông tại A, M là điểm nằm trên cạnh BC. Kẻ MH vuông góc với AB(H thuộc AB). MK vuông góc với AC( K thuộc AC)
a) CM Tứ giác AHMK là hình chữ nhật
b) Chứng minh MH/AC+MK/AB=1( MÌNH CẦN GIẢI GẤP CÂU B)
CÓ AI BIẾT CHỈ MÌNH NHÉ. CẢM ƠN CÁC BẠN NHIỀU
Cho tam giác ABC đều. M là điểm bất kì thuộc BC,E và F theo thứ tự là hình chiếu của M trên AB và AC.
a.Chứng minh tam giác EBM đồng dạng với tam giác FCM
b.Vẽ đường cao AD của tam giác ABC, gọi I là trung điểm của AM.Chứng minh góc IED bằng góc IDE
c.Chứng minh: Tứ giác DEIF là hình thoi
d.Gọi H là trực tâm của tam giác ABC. Chứng minh ID, EF, MH đồng quy
cho tam giác ABC vuông tại A và M là trung điểm BC. từ M kẻ MH vuông góc AB ( H thuộc AB) và MK vuông góc AC ( K thuộc AC) ; a) chứng minh: AHMK là hình chữ nhật; b) chứng minh:BHKM là hình bình hành;c) gọi E trung điểm của MH. chứng minh:B,E,K thẳng hàng
Cho tam giác ABC vuông tại A ( AB<AC). Gọi M là trung điểm BC. Từ M lần lượt kẻ MH vuông góc với AB tại H, MK vuông góc với AC tại K.
a) Chứng minh: K là trung điểm của AC
b) Chứng minh tứ giác AKMH là hình chữ nhật
c) Chứng minh tứ giác HMCK là hình bình hành
d) Gọi N là điểm đối xứng của M qua K. Chứng minh tứ giác AMCN là hình thoi.( các bạn giải chi tiết giúp mình)
cho tam giác ABC , gọi O là một điểm thuộc miền trong của tam giác ABC sao cho góc ABO=ACO.Vẽ OH vuông góc với AB(H thuộc AB), vẽ OK vuông góc AC (K thuộc AC). Gọi M là trung điểm của BC
a) gọi E,F lần lượt là trung điểm của OB và OC .Chứng minh góc OEH=OFK
b) chứng minh MH=MK