Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{CBD}\)(BD là phân giác của góc ABC)
nên \(\widehat{ADB}=\widehat{CBD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
=>ABCD là hình thang
Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{CBD}\)(BD là phân giác của góc ABC)
nên \(\widehat{ADB}=\widehat{CBD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
=>ABCD là hình thang
1. Cho hình thang ABCD(AB//CD). M là trung điểm của BC. Cho biết DM là tia phân giác của góc D. Chứng minh rằng tia AM là tia phân giác của góc A.
2.Tứ giác ABCD có AD=BC và AC=BD. Chứng minh rằng ABCD là hình thang cân.
Tứ giác ABCD có AB= BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang. ( vẽ giúp mình luôn hình ạ )
Bạn nào giải bài toán này hộ mình với. Mình cảm ơn nhiều
Cho hình tứ giác ABCD. Có AB=BC=AD, góc A= 110, góc C= 70. Chứng minh rắng
a, BD là tia phân giác góc D
b, Tứ giác ABCD là hình thang cân
Bài 1: Cho tứ giác ABCD ó AD = AB = BC . Và A + C = 180o. Chứng minh rằng:
a) Tia BD là tia phân giác góc D
b) Tứ giác ABCD là hình thang cân
Cho tứ giác ABCD có BC = CD, đường chéo BD là tia phân giác của góc ADC. Chứng minh rằng tứ giác ABCD là hình thang.
BÀI 1
Cho hình thang vuông ABCD, góc A=góc D=90độ.
a) tìm điểm Ithuộc AD sao cho IC=IB
b)Với điểm I vừa tìm được, giả sử tam giác IBC vuông cân ở I, chứng minh rằng AB+CD=AD
c) Với điểm I vừa tìm được, giả sử DC=1/2 IC,hãy tính góc Bvà C của hình thang ABCD
BÀI 2
Cho tứ giác ABCD, có phân giác góc A cắt CD tại I, biết IC=BC và DC=AD+BC. Chứng minh:
a) ABCD là hình thang
b) BI là phân giác góc ABC
BÀI 3
Cho hình thang ABCD có AB//CD có góc B-góc C=24 độ, góc A=3/2góc B. Tính các góc còn lại
BÀI 4 :
Cho tam giác vuông can A, trên nửa mặt phẳng bờ là BC không chứa A vẽ BD vuông góc BC và BD=BC. Chứng minh :
a) Tứ giác ABCD là hình gì?
b) Tính CD, biết AB=5
MONG MỌI NGƯỜI GIÚP ĐỠ Ạ! MÌNH CẢM ƠN :))