Gọi I là trung điểm của BD
Xét ΔDAB có DN/DA=DI/DB
nên NI=AB/2
Xét ΔBDC có BI/BD=BM/BC
nên MI=DC/2
Xét ΔMNI có MN<NI+MI
nên MN<1/2(AB+CD)
Gọi I là trung điểm của BD
Xét ΔDAB có DN/DA=DI/DB
nên NI=AB/2
Xét ΔBDC có BI/BD=BM/BC
nên MI=DC/2
Xét ΔMNI có MN<NI+MI
nên MN<1/2(AB+CD)
Cho tứ giác ABCD (AB không song song với CD). Giả sử M, N lần lượt là đường trung bình của AB và CD, thỏa mãn: MN = BC + AD / 2 . Gọi I là trung điểm của BD. Chứng minh: ABCD là hình thang.
Cho tứ giác ABCD có AD=BC(AD không song song với BC)
M,N là trung điểm của AB,CD
Đường MN cắt đường AD;BC lần lượt tại E;F.Chứng minh: Góc AEM=Góc BFM
Cho tứ giác ABCD(AB không song song vs CD). Gọi M, N lần lượt là trung điểm của AB và CD biết MN = \(\frac{BC+AD}{2}\) .CMR: ABCD là hình thang.
cho tứ giác ABCD, AB không song song CD, E,F,I lần lượt là trung điểm AD,BC,AC. Chứng minh EF<(AB+CD):2
Cho tứ giác ABCD có AB = CD nhưng không song song. Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh MN tạo với các cạnh AB và CD những góc nhọn bằng nhau.
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA
a) Chứng minh MN song song AC
b) Cho AC=10cm. Tính MN
c) Chứng minh MN song song và bằng PQ,MQ song song và bằng NP
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
cho tứ giác ABCD. gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD và DA
a/ chứng minh : NQ\(\le\)\(\frac{AB+CD}{2}\)
b/Trong trường hợp NQ=\(\frac{AB+CD}{2}\)thì tứ giác ABCD là hình gì? Trong trường hợp này , vẽ đường thẳng song song với AB cắt AD tại E, cắt BC tại F. chứng minh O là trung điểm EF
Cho tứ giác ABCD AB=CD. Gọi M,N lần lượt là trung điểm của AC và BD. MN cắt AB và CD lần lượt tại P và Q
1, Cm tam giác KPQ cân
2, Với điều kiện nào của ABCD thì MN song song vs BC
Cho tứ giác ABCD có BC=AD và BC không song song với AD,gọi M,N,P,Q,E,F lần lượt là trung điểm của các đoạn thẳng AB,BC,CD,DA,AC,BD.
a,C/m tứ giác MEPF là hình thoi
b,C/m MP,NQ,EF đồng quy
Giúp với mn!!