Đáp án C.
Gọi K là trung điểm AC => ∆ OKM đều
Đáp án C.
Gọi K là trung điểm AC => ∆ OKM đều
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng OM và AB bằng:
Cho tứ diện OABC có OA,OB,OC đôi một vuông góc với nhau và OB=OC Gọi M là trung điểm BC, OM=a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng OA và BC bằng
A. a.
B. 2 a
C. 2 a 2
D. 3 a 2
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng M và AB bằng
A. 60 o
B. 30 o
C. 60 o
D. 45 o
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau OA=OB=OC=a. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng OM và AB bằng
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.
a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).
b) Tính góc giữa AB và mặt phẳng (AOI).
c) Tính góc giữa các đường thẳng AI và OB.
Tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài là l. Gọi M là trung điểm của các cạnh AB. Góc giữa hai vecto O M → và B C → bằng:
A. 0 o
B. 45 o
C. 90 o
D. 120 o
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB =OC. Khoảng cách giữa hai đường thẳng OA và BC bằng
A. a 2
B. 3 2 a
C. 3 2 2 a
D. 3 3 a 2
Bài 6. Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Kẻ OH vuông góc với mp(ABC)
tại H. Chứng minh rằng
a) OA⊥BC,OB⊥AC,OC⊥AB
b) Gọi K là giao điểm của AH với BC. Chứng minh rằng AK⊥BC
c) Gọi M là giao điểm của CH với AB. Chứng minh rằng AB⊥MC . Từ đó suy ra H là trực tâm tam giác
ABC.
d)
Bài 7. Cho hình chóp SABCD có đáy ABCD là hình chứ nhật có SA vuông góc với mp(ABCD). Chứng minh
rằng các mặt bên của hình chóp là các tam giác vuông.
Bài 8. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D với AD=DC=AB/2 . Gọi I là trung điểm của đoạn AB, SA vuông góc với mặt đáy. Chứng minh rằng
a) Tam giác ABC vuông tại C
b) CI⊥SB,DI⊥SC
c)CB⊥(SAC)
và các mặt bên hình chóp là các tam giác vuông
Cho tứ diện OABC có OA,OB,OC đôi một tạo với nhau góc và OA = OB= a, OC =2a. Côsin góc giữa đường thẳng OC và mặt phẳng (ABC) bằng
A. 5 3
B. 1 3
C. 2 3
D. 2 2 3