Trong không gian Oxyz, cho tứ diện ABCD với A(1;6;2), B(5;1;3), C(4;0;6), D(5;0;4), viết phương trình mặt cầu tâm D tiếp xúc với mặt phẳng (ABC).
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( 5 ; 1 ; 3 ) ; B ( 1 ; 2 ; 6 ) ; C ( 5 ; 0 ; 4 ) ; D ( 4 ; 0 ; 6 ) . Viết phương trình mặt phẳng qua D và song song với mặt phẳng (ABC).
A. x + y + z – 10 = 0.
B. x + y + z - 9 = 0.
C. x + y + z – 8 = 0.
D. x + 2y + z – 10 = 0.
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0; 4), D(4; 0; 6) Hãy viết phương trình mặt phẳng (α) đi qua cạnh AB và song song với cạnh CD.
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6). Hãy viết phương trình mặt phẳng ( α ) đi qua điểm D và song song với mặt phẳng (ABC).
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Xét tứ diện AB'CD'. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mặt phẳng (ABC). Tính diện tích của thiết diện thu được
Cho tứ diện ABCD có BCD là tam giác đều cạnh 1, AB = 2. Xét M là điểm thay đổi trên cạnh BC. Mặt phẳng α qua M song song với AB và CD lần lượt cắt các cạnh BD, AD, AC tại N, P, Q. Giá trị nhỏ nhất của biểu thức S = M P 2 + N Q 2 bằng
Cho tứ diện ABCD có AB = 6, CD = 8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng:
A. 31 7
B. 18 7
C. 24 7
D. 15 7
Cho hình chóp A.BCD có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A trên mặt phẳng đáy là trung điểm H của CD. Cắt hình chóp bởi mặt phẳng ( α ) song song với AB và CD. Tính diện tích S của thiết diện thu được, biết d ( B , ( α ) ) = a 2 và A B = a 2 .
Cho tứ diện ABCD. Trên cạnh AD, BC theo thứ tự lấy các điểm M, N sao cho M A A D = N C C B = 1 3 . Gọi (P) là mặt phẳng chứa đường thẳng MN và song song với CD. Khi đó thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là
A. Một hình bình hành.
B. Một hình thang với đáy lớn gấp 2 lần đáy nhỏ.
C. Một hình thang với đáy lớn gấp 3 lần đáy nhỏ.
D. Một tam giác.