Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M, N lần lượt là trung điểm của A'B', AC và P là điểm thuộc cạnh CC' sao cho CP=2C'P (như hình vẽ). Tính thể tích khối tứ diện BMNP theo V
A. V 3
B. 2 V 9
C. 4 V 9
D. 5 V 24
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M, N lần lượt là trung điểm của A'B', AC và P là điểm thuộc cạnh CC' sao cho CP=2C'P (như hình vẽ). Tính thể tích khối tứ diện BMNP theo V.
A. V 3
B. 2 V 9
C. 4 V 9
D. 5 V 24
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N lần lượt là trung điểm các cạnh AD, BD. Gọi P là điểm trên cạnh AB sao cho P B P A = 2018 2017 . Tính thể tích V của khối tứ diện PMNC.
A. 27. 2 12
B. 9.2018. 2 16.2017
C. 9. 2 16
D. 9.2017. 2 16.2018
Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm ∆ A B C ; ∆ A B D ; ∆ A C D ; ∆ B C D . Tính thể tích khối tứ diện MNPQ theo V.
A. V 9
B. V 3
C. 2 V 9
D. V 27
Cho khối tứ diện đều ABCD có thể tích V, M, N, P, Q lần lượt là trung điểm của AC, AD, BD, BC. Thể tích khối tứ diện AMNPQ là
A. V 6
B. V 3
C. V 4
D. 2 V 3
Cho khối tứ diện ABCD. Gọi M, N lần luợt là trung điểm của AB và CD (tham khảo hình vẽ bên). Đặt V là thể tích của khối tứ diện ABCD, là thể tích của khối tứ diện MNBC. Khẳng định nào sau đây đúng?
A. V 1 V = 1 4
B. V 1 V = 1 2
C. V 1 V = 1 3
D. V 1 V = 2 3
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau; A B = 6 a ; A C = 7 a và A D = 4 a . Gọi M, N, P tương ứng là trung điểm các cạnh BC, CD, DB. Tính thể tích V của tứ diện AMNP
A. V = 7 2 a 3
B. V = 7 a 3
C. V = 28 3 a 3
D. V = 14 a 3