Cho tứ diện ABCD có thể tích là V. Điểm M thay đổi trong tam giác BCD Các đường thẳng qua M và song song với A B , A C , A D lần lượt cắt các mặt phẳng A C D , A B D , A B C tại N;P;Q. Giá trị lớn nhất của thể tích khối đa diện MNPQ là
A. V/27
B. V/16
C. V/8
D. V/18
Cho tứ diện ABCD có BCD là tam giác đều cạnh 1, AB = 2. Xét M là điểm thay đổi trên canh BC. Mặt phẳng (α) qua M song song với AB và CD lần lượt cắt các cạnh BD, AD, AC tại N, P, Q. Giá trị nhỏ nhất của biểu thức S = M P 2 + N Q 2 bằng
A. 8 5
B. 34 9
C. 3 4
D. 8 9
Cho khối tứ diện ADCD có thể tích V. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A. V 27
B. 4 V 27
C. 2 V 81
D. V 9
Cho tứ diện ABCD có thể tích V . Gọi M;N;P;Q lần lượt là trọng tâm tam giác A B C , A C D , A B D và BCD . Thể tích khối tứ diện MNPQ bằng:
A. 4V/9
B. V/27
C. V/9
D. 4V/27
Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm ∆ A B C ; ∆ A B D ; ∆ A C D ; ∆ B C D . Tính thể tích khối tứ diện MNPQ theo V.
A. V 9
B. V 3
C. 2 V 9
D. V 27
Cho tứ diện ABCD. Xét điểm M thay đổi là một điểm trong của tứ diện. Gọi A ' , B ' , C ' , D ' lần lượt là giao điểm của các đường thẳng AM, BM, CM, DM với các mặt phẳng (BCD), (ACD), (ABD), (ABC). Giá trị nhỏ nhất của biểu thức P = A M M A ' + B M M B ' + C M M C ' + D M M D ' bằng
A. 12
B. 16
C. 4
D. 8
Cho tứ diện ABCD có AB vuông góc với CD, AB=CD=6. M là điểm thuộc canh BC sao cho MC=x.BC (0<x<1). Mặt phẳng (P) đi qua M và song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất S m a x của tứ giác MNPQ bằng bao nhiêu?
A. 9
B. 4,5
C. 36
D. 18
Cho khối chóp S . A B C D có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng A B C D . Tính tỉ số S M S A để thể tích khối đa diện M N P Q . M ' N ' P ' Q ' đạt giá trị lớn nhất.
A. 2 3
B. 1 2
C. 1 3
D. 3 4
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB,SC, SD lần lượt tại M, N, P, Q. Gọi M', N', P', Q' lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD). Tính tỉ số S M S A để thể tích khối đa diện M N P Q . M ' N ' P ' Q ' đạt giá trị lớn nhất.
A. 1 3
B. 3 4
C. 2 3
D. 1 2