Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 2 2
B. 2
C. 2 3 3
D. 6 3
Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A . 4 π a 3 3 .
B . π a 3 6 .
C . 4 π a 3 .
D . π a 3 3 2 .
Cho tứ diện ABCD có tam giác BCD vuông tại B, AC vuông góc với mặt phẳng (BCD), A C = 5 a , B C = 3 a , B D = 4 a . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD
A. R = 5 a 3 2
B. R = 5 a 2 3
C. R = 5 a 3 3
D. R = 5 a 2 2
Trong không gian Oxyz. Cho tứ diện đều ABCD có A(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD) là H (4; -3;-2). Tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD.
A. I(3; -2;-1).
B. I(2;-1;0).
C. I(3; -2;1).
D. I(-3; -2;1).
Cho tứ diện ABCD có A B = A C = 2 , B C = 2 , D B = D C = 3 , góc giữa hai mặt phẳng A B C và D B C bằng 45 ° . Gọi H là hình chiếu vuông góc của A trên mặt phẳng D B C sao cho H và D nằm về hai phía của BC. Tính diện tích S của mặt cầu ngoại tiếp tứ giác ABCD.
A. S = 5 π
B. S = 5 π 4
C. S = 5 π 8
D. S = 5 π 16
Trong mặt phẳng (P) cho tam giác OAB cân tại O, O A = O B = 2 a , A O B ^ = 120 ° . Trên đường thẳng vuông góc với mặt phẳng (P) tại O lấy hai điểm C, D nằm về hai phía của mặt phẳng (P) sao cho tam giác ABC vuông tại C và tam giác ABD đều. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 3 a 2 2
B a 2 3
C. 5 a 2 2
D. 5 a 2 3
Trong mặt phẳng (P) cho tam giác OAB cân tại O , O A = O B = 2 a , A O B ^ = 120 ° . Trên đường thẳng vuông góc với măt phẳng (P) tại O lấy hai điểm C, D , nằm về hai phía của mặt phẳng (P) sao cho tam giác ABC vuông tại C và tam giác ABD đều. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 3 a 2 2
B. a 2 3
C. 5 a 2 2
D. 5 a 2 3
Cho tứ diện ABCD có tam giác ABC là tam giác cân với B A C = 120 0 , A B = A C = a . Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16 .
A. R = 91 a 8 .
B. R = a 13 4 .
C. R = 13 a 2 .
D. R = 6 a .
Cho tứ diện ABCD có hai mặt ABC, BCD là các tam giác đều cạnh a và nằm trong các mặt phẳng vuông góc với nhau. Thể tích của khối tứ diện ABCD là:
A. 3 a 3 8
B. a 3 4
C. a 3 8
D. 3 a 3 4