Chọn A
- Ta có:
- Suy ra AB là hình chiếu của AC lên (ABD).
- Do đó:
Chọn A
- Ta có:
- Suy ra AB là hình chiếu của AC lên (ABD).
- Do đó:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
A. 5
B. 1
C. 51 17
D. Không xác định
cho hình tứ diện ABCD có AB,AC,AD đôi một vuông góc và AB=AC=AD=5cm gọi M là trung điểm BC a) chứng minh BC vuông góc ADM b) tính khoảng cách từ điểm A đén BCD C) tính góc giữa đường thẳng DM và mặt phẳng ABC
Cho tứ diện ABCD với A C = 2 3 A D , ∠ C A B = ∠ D A B = 60 ° , CD=AD .Gọi là góc giữa AB và CD. Chọn khẳng định đúng?
A. cos φ = 1 4
B. φ = 60 °
C. φ = 30 °
D. cos φ = 3 4
Cho tứ diện ABCD với A C = 2 3 A D , ∠ C A B = ∠ D A B = 60 ° , CD=AD .Gọi là góc giữa AB và CD. Chọn khẳng định đúng?
A. cos φ = 1 4
B. φ = 60 °
C. φ = 30 °
D. cos φ = 3 4
Cho tứ diện ABCD có BC = CD = BD = 2a, AC = AD = 2 , AB = a. Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là:
A. 90 o .
B. 60 o .
C. 45 o
D. 30 o
Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng 60 o . Gọi M và N lần lượt là trung điểm của AB và CD.
Góc giữa hai mặt phẳng (ACD) và (BCD) là:
A. A C B ⏜
B. A N B ⏜
C. A D B ⏜
D. M N B ⏜
Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Chứng minh: Góc giữa hai mặt phẳng (ACD) và (BCD) là A I B ^
Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
A. Góc giữa AC và (BCD) là góc ACB.
B. Góc giữa AD và (ABC) là góc ADB.
C. Góc giữa AC và (ABD) là góc CAB.
D. Góc giữa CD và (ABD) là góc CBD.
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, biết AB=AC=AD=1. Số đo góc giữa hai đường thẳng AB và CD bằng
A. 45 ⁰ .
B. 60 ° .
C. 30 ⁰ .
D. 90 ⁰ .