AB ⊥ AC, AB ⊥ AD nên AB ⊥ (AC, AD) hay AB ⊥ (ACD) (theo định lí trang 99)
AB ⊂ (ABC) nên (ABC) ⊥ (ACD) (theo định lí 1 trang 108)
AB ⊂ (ADB) nên (ADB) ⊥ (ACD)
AD ⊥ AC, AD ⊥ AB nên AD ⊥ (AC, AB) hay AD ⊥ (ABC)
AD ⊂ (ADB) nên (ADB) ⊥ (ABC)
AB ⊥ AC, AB ⊥ AD nên AB ⊥ (AC, AD) hay AB ⊥ (ACD) (theo định lí trang 99)
AB ⊂ (ABC) nên (ABC) ⊥ (ACD) (theo định lí 1 trang 108)
AB ⊂ (ADB) nên (ADB) ⊥ (ACD)
AD ⊥ AC, AD ⊥ AB nên AD ⊥ (AC, AB) hay AD ⊥ (ABC)
AD ⊂ (ADB) nên (ADB) ⊥ (ABC)
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau, biết rằng AB = a; AC =a 2 ; AD = a 3 ,(a>0) Thể tích V của khối tứ diện ABCD là:
A. V = a 3 6 3
B. V = a 3 6 6
C. V = a 3 6 2
D. V = a 3 6 9
Tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Chứng minh rằng (SOAB)2= SABC + SHBC
cho hình tứ diện ABCD có AB,AC,AD đôi một vuông góc và AB=AC=AD=5cm gọi M là trung điểm BC a) chứng minh BC vuông góc ADM b) tính khoảng cách từ điểm A đén BCD C) tính góc giữa đường thẳng DM và mặt phẳng ABC
Cho tứ diện OABC có ba cạnh OA, OB và OC đôi một vuông góc. Gọi H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC). Chứng minh rằng
Cho tứ diện (ABCD) có các cạnh AB, AC, AD đôi một vuông góc với nhau, AB = 6a, AC= 7a, AD = 8a . Gọi M, N, P lần lượt là trung điểm của BC, CD, BD Thể tích khối tứ diện AMNP là:
A. 14 a 2 .
B. 28 a 2 .
C. 42 a 2 .
D. 7 a 2 .
Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.
a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.
Bài 6. Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Kẻ OH vuông góc với mp(ABC)
tại H. Chứng minh rằng
a) OA⊥BC,OB⊥AC,OC⊥AB
b) Gọi K là giao điểm của AH với BC. Chứng minh rằng AK⊥BC
c) Gọi M là giao điểm của CH với AB. Chứng minh rằng AB⊥MC . Từ đó suy ra H là trực tâm tam giác
ABC.
d)
Bài 7. Cho hình chóp SABCD có đáy ABCD là hình chứ nhật có SA vuông góc với mp(ABCD). Chứng minh
rằng các mặt bên của hình chóp là các tam giác vuông.
Bài 8. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D với AD=DC=AB/2 . Gọi I là trung điểm của đoạn AB, SA vuông góc với mặt đáy. Chứng minh rằng
a) Tam giác ABC vuông tại C
b) CI⊥SB,DI⊥SC
c)CB⊥(SAC)
và các mặt bên hình chóp là các tam giác vuông
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, biết AB=AC=AD=1. Số đo góc giữa hai đường thẳng AB và CD bằng
A. 45 ⁰ .
B. 60 ° .
C. 30 ⁰ .
D. 90 ⁰ .
Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với nhau, AB=a, AC=b, AD=c Tính thể tích V của khối tứ diện ABCD theo a, b, c