Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ...+ (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) ⋮ 13
=> A + 1 ⋮13
=> A : 13 dư 12
Vậy số dư khi A : 13 là 12
Số số hạng của A:
2021 - 1 + 1 = 2021 (số)
Do 2021 chia 3 dư 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng và dư 2 số hạng như sau:
A = 3 + 3² + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3²⁰¹⁹ + 3²⁰²⁰ + 3²⁰²¹)
= 12 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3²⁰¹⁹.(1 + 3 + 3²)
= 12 + 3³.13 + 3⁶.13 + ... + 3²⁰¹⁹.13
= 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹)
Do 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) ⋮ 13
⇒ A = 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) chia 13 dư 12
Vậy A chia 13 dư 12