\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo t/c dãy tỉ số=nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\frac{2b}{2b}=1\)
\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)
\(=>c+c=0=>2c=0=>c=0\)
Vậy c=0
cần 2 trường hợp:
- a+b=0
- a+b khác 0 là trường hợp đã làm