Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)
\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)