\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Cho tỉ lệ thức a/b = c/d . Chứng minh rằng ab/cd = ( a - b ) ^ 2 / ( c - d ) ^2
Cho tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d khác 0 và c khác-d
Chứng minh rằng : \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
1.cho tỉ lệ thức a/b=c/d chứng minh rằng
a. 2004*a4+ 2005*b4/2004*c4+2005*d4=a2*b2/c2*d2
b. (2*a+3*c)*(2*b-3*c)=(2*a-3*c)*(2*b+3)
2.cho dãy tỉ số bằng nhau; a/2003=b/2005=c/2007.chứng minh rằng;
(a-c)2/4=(a-c)*(b-c)
3.Cho a,b,c,d thỏa mãn; a2+b2/c2+d2=a*b/c*d chứng minh rằng; a*d=b*c hoặc a*c=b*d
4. cho a,b,c,x.y.t khác 0 thỏa mãn x?/a=y/b=t/c chứng minh rằng;
x2+y2+z^2/(a*x+b*y+c*z)2=1/a2+b2+c2
5.cho tỉ lệ thức ab/cd=b/c ( c khác 0)
chứng minh rằng; a2+b2/b2+c2=a/c
6.cho tỉ lệ thức ab/a+b=bc/b+c chứng minh rằng; a/b=b/c( c khác 0)
7. cho tỉ lệ thức: ab/b=bc/c=ca/a chứng minh rằng; a=b=c
cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. chứng minh rằng a/b=c/d
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0,a khác +-b,c khác +- d)
Chứng minh rằng:
\(\frac{ab}{cd}\)=\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho tỉ lệ thức a/b=c/d. Chứng minh rằng: ab/cd=a^2-b^2/c^2-d^2 và (a+b/c+d)=a^2+b^2/c^2+d^2
Cho tỉ lệ thức a/b=b/c chứng minh rằng :
1.a-b/b=c-d/d
2.ab/cd=(a-d)^2/(c-d)^2