cho tam giác ABC vuông tại A có AH là đường cao
a, cm : tg AHC đồng dạng với tg BAC . Suy ra AC^2 = CH.BC
b, cm: tg HAB đồng dạng HCA . Viết các tỉ số đồng dạng
c,Gọi I và K lần lượt là trung điểm của cạnh AH và HC . Chứng minh góc ABI = góc ACK
d, Đường thẳng vuông góc với BC tại C cắt BI tại N , BN cắt AM tại M . CM : MI.BN=MN.BI
Cho tg ABC vuông tại A (AB<AC) , đường cao AH
a, CM: tg BAC đồng dạng tg BAH
B,cm: BC.CH=AC^2
c, kẻ HE vuông góc vs AB, kẻ HF vuông góc vs AC. C : tg AEF đồng dạng với tg ABC
d, Đường thẳng EF cắt đường thẳng BC tại M. Chứng tỏ rằng: MB.MC=ME.MF
Cho tg ABC vuông tại A có BC =5cm. ke phân giác BD
a) tính AC;AD và DC Biết AB=3cm
b) Kẻ đường cao AH của tgABC. Chứng minh tg ABC ~ tg HAC
c)Tính S HAC. Biết AB= 3cm
d) CM : BA.BC>BD2
e) Gọi F,E lần lượt là hình chiếu của H trên AB,AC. Xác định vị trí của điểm A để diện tích của hình chữ nhật AFHE lớn nhất
Cho tam giác ABC vuông tại A có AB=12, AC=16, đường cao AH (H thuộc BC). Tia p/g của góc ABC lần lượt cắt AH và AC tại M và N. Đường thẳng qua H song song với BN cắt AC tại I.
1) CM tg ABC đồng dạng với tg HBA
2) Tính độ dài các cạnh BC, AH, BH
3) CM tg AMN cân tại A và AM.AB=MH.BC
4)CM AM^2=NI.NC
Cho tg ABC vuông tại A và có đường cao AH . Biết AB =10 cm, AC =16 cm A. CMR tg ABH đồng dạng với tg CAH rồi suy ra tỉ số đồng dạng k B.tinh BC, AH C. Tính diện tích tg ABH, CAH, ABC
Cho tg ABC vuông tại A và có đường cao AH . Biết AB =10 cm, AC =16 cm A. CMR tg ABH đồng dạng với tg CAH rồi suy ra tỉ số đồng dạng k B.tinh BC, AH C. Tính diện tích tg ABH, CAH, ABC
Cho tg ABC vuông tại A và có đường cao AH . Biết AB =10 cm, AC =16 cm A. CMR tg ABH đồng dạng với tg CAH rồi suy ra tỉ số đồng dạng k B.tinh BC, AH C. Tính diện tích tg ABH, CAH, ABC
Cho tg ABC vuông tại A ( AB<AC ) có đường cao AH.
a/ Chứng minh tg ABC đồng dạng tg HBA.
b/ Cho HB=9cm, HC=16cm. Tính BC, AB, AH.
c/ Vẽ BS là đưuòng phân giác trong của tg ABC, BS cắt AH tại I. Chứng minh: BI.BA=BH.BS
d/ Trên tia đối AH lấy điểm M, vẽ tia Cx vuông góc MB tại K. Lấy E trên tia Cx sao cho BE=BA. Chứng minh tg BEM vuông.