1.Cho A={1;2;3;4;5}.Chia A thành 2 tập con. Chứng minh rằng trong một tập con luôn tìm được hai số có hiệu bằng một số thuộc tập đó.
2.Cho X={1;2;3;4;5;6;7;8;9}. Chứng minh rằng với mọi cách chia X thành hai tập con, luôn tồn tại một tập con chứa ba số sao cho tổng của hai số bằng số thứ ba.
Cho tập X = { 1; 2; ... ; 2015 } và 2 tập con A, B có tổng phần tử lớn hơn 2016. Chứng minh rằng tồn tại ít nhất 1 phần tử của tập A và 1 phần tử của tập B sao cho có tổng bằng 2016.
Cho a,b \(\in\) N* sao cho a + b là 1 số lẻ. Chia tập hợp các số nguyên dương thành 2 tập rời nhau. Chứng minh rằng luôn tồn tại 2 phần tử x,y cùng thuộc 1 tập sao cho x - y = { a ; b }
1/tìm 2 tập A và B sao cho A thuộc B và A là con của B
2 /cho 3 tập A B và C cho A là con hoặc bằng B , B là con hoặc bằng C chứng minh A là con hoặc bằng C
Cho S là một tập các số nguyên sao cho :
a) Tồn tại a,b thuộc S với gcd(a,b) = gcd(a-2,b-2) = 1
b) Nếu x,y là hai phần tử của S( có thể bằng nhau ) thì x2 - y cũng thuộc S
CMR S là tập tất cả các số nguyên
Cho tập X và tập Y . Ta gọi quan hệ f là một ánh xạ từ tập X vào tập Y nếu mỗi phần tử x thuộc X đều có một tương ứng duy nhất y thuộc Y. Ánh xạ f từ tập X vào tập Y gọi là đơn ánh nếu hai phần tử x, x' khác nhau bất kì thuộc X đều có hai tương ứng y,y' khác nhau thuộc Y. Ánh xạ f từ tập X vào tập Y gọi là toàn ánh nếu mọi phần tử y bất kì thuộc Y đều là ảnh của một phần tử x nào đó thuộc Y. Ánh xạ f từ tập X vào tập Y gọi là song ánh nếu ánh xạ f từ tập X vào tập Y vừa đơn ánh vừa toàn ánh.
Cho tập X có n phần tử và tập Y có m phần tử. Có bao nhiêu :
a) Ánh xạ f từ X vào Y
b) Đơn ánh f từ X vào Y khi \(n\ge m\)
c) Toàn ánh f từ X vào Y khi n = m
Cho tập hợp X= {1;2;3;4;5;6;7;8;9}, chia tập hợp X thành 2 tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng với mọi cách chia luôn tồn tại 3 số a,b,c trong một tập hợp thõa mãn a+c=2b
Bài 1:Viết các tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử:
Tập hợp A các số tự nhiên không vượt quá 20.
Tập hợp B các số tự nhiên lớn hơn 5 nhưng nhỏ hơn 6.
Bài 2:Cho M={a,b,c}
a,Viết các tập hợp con của M mà mỗi tập hợp có 2 phần tử
b,Dùng kí hiệu tập hợp con để thể hiện quan hệ giữa tập hợp con đó với tập hợp M.
Bài 3:Viết tập hợp A các số tự nhiên nhỏ hơn 10,tập hợp B các số tự nhiên nhỏ hơn 5,rồi dùng kí hiệu tập hợp con để thể hiện quan hệ giữa hai tập hợp trên.
Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).
Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S.
Đề toán yêu cầu:
a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.
b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.