Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác OAB đều cạnh a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho OM=x. Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và OM. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất

A. x = a 2 .

B. x = a 2 2 .

C. x = a 6 12 .

D. x = a 3 2 .

Cao Minh Tâm
22 tháng 5 2018 lúc 6:27

Đáp án B

Ta có

A F ⊥ O B , A F ⊥ M O ⇒ A F ⊥ M O B ⇒ A F ⊥ M B

  M B ⊥ A E nên  M B ⊥ A E F ⇒ M B ⊥ E F   .

Suy ra Δ M O B ∽ Δ M E N  , mà Δ M E N ∽ Δ F O N nên Δ M O B ∽ Δ F O N . Khi đó  O B O M = O N O F ⇒ O N = O B . O F O M = a . a 2 x = a 2 2 x   .

Từ

V A B M N = V M . O A B + V N . O A B = 1 3 . S Δ O A B . O M + O N = 1 3 . a 2 3 4 . x + a 2 2 x

⇒ V A B M N = a 2 3 12 x + a 2 2 x ≥ a 2 3 12 .2 x . a 2 2 x = a 2 3 12 . 2 a = a 3 6 12

Dấu “=” xảy ra

⇔ x = a 2 2 x ⇔ 2 x 2 = a 2 ⇔ x = a 2 2 .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết