Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Karin Korano

Cho tam giác nhọn ABC, trên cạnh BC lấy các điểm E,F sao cho góc BAE bằng góc CAF, gọi M, N lần lượt là hình chiếu vuông góc của F trên các đường thẳng AB và AC, kéo dài AE cắt đường tròn ngoại tiếp tam giác ABC tại D. Chứng minh rằng tứ giác AMDN và tam giác ABC có diện tích bằng nhau

Thầy Giáo Toán
7 tháng 3 2016 lúc 23:22

Có vẻ bài này hơi không phù hợp với học sinh lớp 9. Đầu tiên ta sẽ phải sử dụng định lý sin cho tam giác: Trong tam giác ABC với bán kính đường tròn ngoại tiếp R thì tỷ số giữa cạnh và sin góc đối diện bằng 2R. Nhận xét tiếp theo: Diện tích tam giác bất kỳ một nửa tích độ dài hai cạnh nhân với sin của góc xen giữa hai cạnh đó.

Ta có \(S\left(ABC\right)=S\left(ABF\right)+S\left(ACF\right)=\frac{1}{2}AB\cdot AF\cdot\sin BAF+\frac{1}{2}AC\cdot AF\cdot\sin CAF\)
\(=\frac{1}{2}AB\cdot\frac{CD}{2R}\cdot AF+\frac{1}{2}AC\cdot AF\cdot\frac{BD}{2R}=\frac{AF}{4R}\left(AB\cdot CD+AC\cdot BD\right).\)  Do tứ giác ABDC nội tiếp nên theo định lý Ptoleme ta có \(AB\cdot CD+AC\cdot BD=AD\cdot BC.\)  LSuy ra \(S\left(ABC\right)=\frac{AF\cdot AD\cdot BC}{4R}.\)


Tiếp theo ta có \(S\left(AMDN\right)=S\left(AMD\right)+S\left(ADN\right)=\frac{1}{2}AM\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AN\cdot\sin DAC\)

\(=\frac{1}{2}AF\cdot\cos DAC\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AF\cdot\cos BAD\cdot\sin DAC\)

\(=\frac{1}{2}AF\cdot AD\cdot\left(\cos DAC\cdot\sin BAD+\sin DAC\cdot\cos BAD\right)=\frac{1}{2}\cdot AF\cdot AD\sin\left(DAC+BAD\right)\)
\(=\frac{1}{2}AF\cdot AD\cdot\sin BAC=\frac{1}{2}AF\cdot AD\cdot\frac{BC}{2R}=\frac{AF\cdot AD\cdot BC}{4R}.\)

Ở đây ta sử dụng công thức hình chiếu \(\sin\left(a+b\right)=\sin a\cos b+\cos a\sin b.\)

Vậy ta có tứ giác AMDN và tam giác ABC cùng diện tích.
 

Nguyễn Thái Sơn
8 tháng 4 2020 lúc 14:09

Karin Korano             

câu hỏi này của lớp 11 nhé !

1 cách trình bày khác; ngắn gọn hơn nha Thầy Giáo Toán

đặt ^BAE=^CAE=α;  EAF=β

Ta có S∆ABC =1/2.AB.AF.sin(α+β)+1/2 .AC.AF sin α =AF/4R (AB.CD+AC.BD)

(R-là bán kính đường tròn ngoại tiếp tam giác ABC) (1)

Diện tích tứ giác ADMN là

SADMN =1/2.AM.AD.sin α +1/2AD.AN.sin(α+β) = 1/2.AD.AF.sin(2α +β) =AF/4R.AD.BC (2)

Vì tứ giác ABDC nội tiếp trong đường tròn nên theo định lí Ptoleme ta có

: AB.CD + AC.BD = AD.BC (3).

Từ (1), (2), (3) ta có điều phải chứng minh

 

Khách vãng lai đã xóa

Các câu hỏi tương tự
tống thị quỳnh
Xem chi tiết
I lay my love on you
Xem chi tiết
Lê Tâm Hảo
Xem chi tiết
hien pham thi thu
Xem chi tiết
Hoa lưu ly
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Mèo con dễ thương
Xem chi tiết