Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Trên cạnh BC lấy điểm D sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm (O) tại M. Gọi E là hình chiếu của M trên AC.
a) Chứng minh tứ giác CDEM nội tiếp một đường tròn.
b) Chứng minh: MA.MD=MB.ME.
Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
d. Phân giác góc ABD cắt CE tại M , cắt AC tại P. Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì ? Vì sao ?
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) và AB<AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB cắt BC,AC tại M,N.
1) Chứng minh: Tam giác ANB cân ?
2) Đường thẳng AD cắt đường tròn (O) tại I, BI cắt DM tại K. Trên đoạn BD lấy điểm P sao cho IP//DN. AP cắt BC tại Q. Gọi G là trung điểm DK. CMR: Ba điểm Q,I,G thẳng hàng ?
3) AD căt BC ở S. Gọi H là hình chiếu của B trên AD. CMR tâm đường tròn (HCS) thuộc 1 đường thẳng cố định ?
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Hai đường cao BD và CE của tam giác cắt nhai tại H. Gọi M là trung điểm BC. Gọi I là trung điểm DE. Chứng minh góc DAM = góc DAI
Cho tam giác ABC (AB>AC) nhọn nội tiếp đường tròn (O;R) hai đường cao BE và CF của tam giác cắt nhau tại H.
1.Chứng minh tứ giác BCEF nội tiếp đường tròn
2.tia AH cắt BC tại I và cắt (O) ở K,kẻ đường kính AD.Gọi M là giao điểm của BC và HD,L là hình chiếu của B trên AD.Chứng minh góc LMB=2CBE và 3 điểm E,M,L thẳng hàng.
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).
Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.
a) Chứng minh A, L, K thẳng hàng
b) Chứng minh HL vuông góc với AK
3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.
Chứng minh M, H, K thẳng hàng
4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).
Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.
Tìm vị trí của K trên BC để BC, EF, HL đồng quy.
Bài Tập
Cho ( O; R), dây BC cố định ( BC< 2R ) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn . Các đường cao BD và CE của tam giác CE của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHE nội tiếp
b) Chứng minh rằng đường thẳng kẻ qua A và vuông góc với DE luôn đi qua một điểm cố định
c) Phân giác góc ABD cắt CE tại M , cắt AC tại P . Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì? Tại sao
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R) . Đường cao BD, CE cắt nhau tại H. I là trung điểm BC, AI cắt OH tại G. CMR : G luôn di chuyển trên 1 đường cố định khi B, C cố định , A di động trên cung BC.