cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
Cho tam giác ABC nhọn có đường cao AH. Gọi M,N,K lần lượt là trung điểm AB,BC,AC. Bik AB<AC.Cm tứ giác MHNK là hình thang cân.
cho tam giác ABC là tam giác nhọn ( AB< AC). Gọi M và N lần lượt là trung điểm của AB và AC.
a) Chứng minh MN // BC
b) Biết BC = 12 cm. Tính MN
c) Chứng minh tứ giác BMNC là hình thang
Cho tam giác ABC nhọn . Gọi M,N,P lần lượt là trung điểm của AB,AC,BC . Kẻ đường cao AH . Chứng minh rằng tứ giác MNPH là hình thang cân
Cho tam giác abc có ba góc nhọn biết AB nhỏ hơn AC Gọi M N lần lượt là trung điểm của AB AC a)Chứng minh tứ giác mncb là hình thang b) Gọi D là trung điểm của BC Chứng minh tứ giác MNCD là hình bình hành c) Gọi E là điểm đối xứng của d qua n Chứng minh tứ giác ADCE là hình bình hành d) tam giác ABC cần thêm điều kiện gì để tam giác tứ giác ABCE thành hình chữ nhật
giải cho tam giác ABC nhọn. gọi D,E,F lần lượt là trung điểm của các cạnh AB,AC,và BC. vẽ đường cao AH. chứng minh A và H lần lượt đối với nhau qua DE. tứ giác DEFH là hình thang cân
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG.
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG(Chỉ cần câu c)