a: Xét tứ giác AIBC có
H là trung điểm chung của AB và IC
nên AIBC là hình bình hành
b: Xét tứ giác AMBN có
AM=NB
AM//NB
Do đó: AMBN là hình bình hành
Suy ra: AB cắt MN tại trung điểm của mõi đường
=>H là trung điểm của MN
=>HM=HN
a: Xét tứ giác AIBC có
H là trung điểm chung của AB và IC
nên AIBC là hình bình hành
b: Xét tứ giác AMBN có
AM=NB
AM//NB
Do đó: AMBN là hình bình hành
Suy ra: AB cắt MN tại trung điểm của mõi đường
=>H là trung điểm của MN
=>HM=HN
NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY
1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC
b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?
c) CM: Tứ giác ABEF là hình thang cân
d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?
2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC.a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau
d) Tính diện tích tam giác ADE theo diện tích tam giác ABC
3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.a) CM: Tứ giác ABDC là hình thoi
b) CM: Tứ giác AMCE là hình chữ nhật
c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE
d) CM: AK,CI,EM đồng quy
4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.a) CMR: BM song song với DN
b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi
d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.
5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.a) CM : Tứ giác ABDC là hình thoi
b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành
c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật
d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF
6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK
c) CM: ba điểm E,H,K thẳng hàng
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 1: Cho hình chữ nhật ABCD ,I là điểm đối xứng với D qua C
a/Tứ giác ABIC là hình gì?Vì sao?
b/Gọi E là trung điểm BC,Cm:A,E,I thẳng hàng
c/Gọi O là giao điểm BD và AC, M là trung điểm BI.Cm:Tứ giác BOCM là hình bình hành
Bài 2: Cho tam giác ABC cân tại A( góc A nhọn).Các đường cao AQ,BN ,CM cắt nhau tại H,K là điểm đối xứng với H qua Q
a/Cm:Tứ giác BHCK là hình bình hành
b/Đường thẳng qua K // BC cắt đường thẳng qua C//AK tại E. CM:KC=QE
c/Cm:Tứ giác HCEQ là hình bình hành
d/QE cắt BN tại I.Tìm điều kiện của tam giác ABC để tứ giác HIEC là hình thang cân
Cho tam giác ABC cân tại A, E và H là trung điểm của AB và AC
a/ CM tứ giác AEHC là hình thanh
b/ Gọi F là điểm đối xứng của H qua E. CM tứ giác AHBF là hình chữ nhật
c/ Gọi I là trung điểm của AH. CM ba điểm F,I,C thẳng hàng
Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C
Qua I vẽ đường thẳng song song vs AB, cắt AC ở H
Qua I vẽ đường thẳng song song vs AC, cắt AB ở K
a) Tứ giác AHIK là hình gì?
b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?
c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?
Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC
a) Tứ giác AEDF là hình gì? Vì sao?
b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?
c) CMR: M đối xứng vs N qua A
d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac
a) CM D đx vs E qua A
b) Tam giác DHE là tam giác gì? Vì sao?
c) Tứ giác BNEC là hình gì? Vì sao
d) CMR BC= BD+CE
Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:
a) Hình chứ nhật ; b) Hình thoi ; c) hình vuông
Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.
a) CMR: Tứ giác DEHK là hbh
b) Tam giác ABC có đk j thì tứ giác DEHK là hcn
c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?
1/cho tam giác ABC vuông tại A, đường trung tuyến AD (D\(\in\)AB). gọi M là điểm đối xứng vs D qua AB, gọi N là điểm đối xứng vs D qua AC.Chứng minh:
a/tứ giác AMBD là hình thoi
b/ 3 điểm M,A,N thẳng hàng
c/ tứ giác MBCN là hình bình hành
2/cho \(\Delta\)ABC cân tại A, AM là đường trung tuyến . gọi I là trung điểm của AC. Gọi K là điểm đối xứng vs M qua I.
a/ C/m tứ giác AKMB là hình bình hành.
b/ C/m tứ giác AKcm là hình chữ nhật.
c/ gọi H là trung điểm của AB. C/m tứ giác AHMI là hình thoi.
cho tam giác ABC nhọn (AB < AC).gọi AH là đường cao.M,N,K lần lượt là trung điểm của AB, AC,BC
a) chứng minh tứ giác BMNK là hình bình hành.
b) gọi D là điểm đối xứng của H qua M. chứng minh tứ giác ADBH là hình chữ nhật.
c) gọi I là trung điểm NK. Chứng minh 3 điểm C,M,I thẳng hàng.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
chiều mình học rồi ạ.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.