Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E, H là trực tâm của ΔABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE, ta có:
∠ (DHE) = 360 0 – ( ∠ A + ∠ D + ∠ E ) = 360 0 - 60 0 + 90 0 + 90 0 = 120 0
∠ (BHC) = ∠ (DHE)(đối đỉnh)
∆ BHC = ∆ BMC (chứng minh trên)
⇒ ∠ (BMC) = ∠ (BHC)
Suy ra: ∠ (BMC) = ∠ (DHE) = 120 0