Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
Cho tam giác nhọn ABC, kẻ đường cao BE và CF cắt nhau tại H .
a/ Chứng minh:
b/ Chứng minh :AB.AF = AE . AC
c/ Chứng minh : AHBC.
d/ Chứng minh . BH.BE+CH.CF=BC2
Cho tam giác nhọn ABC có các đường cao AD, BE và CF đồng quy tại H. Chứng minh:
a) Δ A F N ∽ Δ M D C ; ;
b) H là giao điểm các đường phân giác của Δ D EF ;
c) B H . B E + C H . C F = B C 2 .
Cho tam giác ABC nhọn đường cao AD BE CF cắt nhau tại H .Chứng minh Tam giác HFB đồng dạng với tam giác HEC chứng minh BH.BE=BD.BC Chứng minh BH.BE + CH.CF =BC^2
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD=HB. HE=HC. HF
b) AHAD+BH.BE+CH.CF=(AB²+BC²+CA²)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Giải chi tiết
Cho tam giác ABC nhọn có các đường cao AD , BE , CF cắt nhau tại H
CMR : a, AF. AB = AE.AC
b,BH.BE=BD.BC
c, BF.BA+CE.CA=BC2
cho tam giác ABC có 3 đường cao AD,BE,CF cát nhau tại H
a) CM tam giác EAH đồng dạng tam giác DAC ; tam giác FAH đồng đạng tam giác DAB
b) CM AF.AB=AHAD , AE.AC=AH.AD , AE.AC=AF.AB
c) CM BH.BE+CH.CF=BC2
GIẢI GIÚP MIK VS Ạ
cho tam giác abc nhọn (ab<ac) vẽ đường cao be và cf cắt nhau tại h.
a chứng minh tam giác abe đồng dạng với tam giác acf
b chứng minh he.hb=hf.hc
c. ah cắt bc tại d . Chứng minh: BH.BE+CH.CF=BC2
Bài 7: Cho ABC nhọn có các đường cao AD,BE,CF cắt nhau tại H.
a. Chứng minh AB.AF=AC.AE
b. Chứng minh AEF ABC.
c. Chứng minh Góc BEF=BCF
d. Chứng minh BH.BE+CH.CF=BC2.
e. Chứng minh EH là phân giác
g. Chứng minh : AF/FB.DB/DC.CE/EA=1