Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Trần Hà Phương

Cho tam giác MNP có MN =MP . Gọi I là trung điểm của NP

a) Chứng minh : tam giác MNI = tam giác MPI 

b) Chứng minh MI tia phân giác của góc NMP và MI vuông góc NP

a: Xét ΔMNI và ΔMPI có

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

b: ΔMIN=ΔMIP

=>\(\widehat{MIN}=\widehat{MIP}\)

mà \(\widehat{MIN}+\widehat{MIP}=180^0\)(hai góc kề bù)

nên \(\widehat{MIN}=\widehat{MIP}=\dfrac{180^0}{2}=90^0\)

=>MI\(\perp\)NP

ΔMIN=ΔMIP

=>\(\widehat{IMN}=\widehat{IMP}\)

=>MI là phân giác của góc NMP

Nguyễn Thị Thu Ngân
23 tháng 11 lúc 20:26

a, Ta có MN=MP nên

=> tam giác MNP cân

Xét tam giác MNI và tam giác MPI ta có:

MN=MP(gt)

MI là cạnh chung

Góc MPI= góc MNI ( MNP cân )

=> tam giác MNI=tam giác MPI (c.g.c)


Các câu hỏi tương tự
SHIZUKA
Xem chi tiết
Lê Thanh Hải
Xem chi tiết
Nguyễn Thị Hoàng Dung
Xem chi tiết
sakuraharuno1234
Xem chi tiết
Hoàng Đức Phú
Xem chi tiết
Han Gia
Xem chi tiết
Nguyễn Hương Thảo
Xem chi tiết
ZzzvuongkhaiZzz
Xem chi tiết
Nana Kazumi
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết