Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c ∈ R ; a > 0 và d > 2018 a + b + c + d - 1018 < 0 .
Số cực trị của hàm số y=|f(x)-1018| bằng
A. 3
B. 2
C. 1
D. 5
Cho f(x) là hàm liên tục trên đoạn 0 ; a thỏa mãn f x f a − x = 1 f x > 0 , ∀ x ∈ 0 ; a và ∫ 0 a d x 1 + f x = b a c , trong đó b, c là hai số nguyên dương và b c là phân số tối giản. Khi đó b + c có giá trị thuộc khoảng nào dưới đây?
A. 11 ; 22
B. 0 ; 9
C. 7 ; 21
D. 2017 ; 2020
Cho hàm số f x = a x 2 + b x + c khi x ≥ 0 a x - b - 1 khi x < 0 . Khi hàm số f(x) có đạo hàm tại x 0 = 0 . Tính giá trị biểu thức T = a + 2b
A. -4
B. 0
C. -6
D. 4
Cho số phức z = a + b i ( a , b ∈ R ; a ≥ 0 , b ≥ 0 ) . Đặt đa thức f ( x ) = a x 2 + b x - 2 . Biết f ( - 1 ) ≤ 0 , f ( 1 / 4 ) ≤ - 5 4 . Tìm giá trị lớn nhất của |z|
A. max|z|=2 6
B.max|z|=3 2
C.max|z|=5
D. max|z|=2 5
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ , a > 0 và d > 2018 a + b + c + d - 2018 < 0 . Số cực trị của hàm số y = f ( x ) - 2018 bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a;b;c;d ∈ R, a ≠ 0) có đồ thị (C). Biết rằng đồ thị (C) đi qua gốc tọa độ và có đồ thị hàm số y = f’(x) cho bởi hình vẽ sau đây.
Tính giá trị H = f(4) – f(2)
A. H = 51
B. H = 54
C. H = 58
D. H = 64
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5