Xét ΔJHF vuông tại H và ΔKIG vuông tại I có
HF=IG
góc JFH=góc KGI
=>ΔJHF=ΔKIG
=>HF=IG
Xét tứ giác JHKI có
JH//KI
JH=KI
=>JHKI là hình bình hành
=>HL=LI
FH+LG=IG+LQ=IL=HL
Xét ΔJHF vuông tại H và ΔKIG vuông tại I có
HF=IG
góc JFH=góc KGI
=>ΔJHF=ΔKIG
=>HF=IG
Xét tứ giác JHKI có
JH//KI
JH=KI
=>JHKI là hình bình hành
=>HL=LI
FH+LG=IG+LQ=IL=HL
Cho tam giác ABC vuông tại A, góc ABC nhỏ hơn 45 độ. Kẻ HA vuông góc BC tại H. Trên tia HA lấy điểm K sao cho HK = HC. Qua K kẻ đường thẳng song song với BC cắt AB tại E. Trên tia đối của tia HA lấy điểm F sao cho HF = AK .Tính góc CFE
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE=CF. Nối EF cắt BC tại O . Kẻ EI song song với AF ( I thuộc BC)
A CHứng minh tam giác BEI là tam giác cân
B CHứng tỏ OE=OF
C Đường thẳng qua B Và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K. Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF
Cho tam giác ABC vuông cân tại A, gọi M là trung điểm của cạnh BC, lấy điểm D trên đoạn BM. Kẻ BH, CK lần lượt vuông góc với tia AD tại H và K. Trên nửa mặt phẳng bờ AB chứa điểm C, kẻ tia Bx sao cho góc ABx =135 độ. Lấy E trên đoạn thẳng AB, qua E kẻ đường thẳng vuông góc với EC cắt Bx tại F. Chứng minh EC=EF.
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC ). a, CMR: tam giác BEI là tam giác cân b, CMR: OE = OF c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K. Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF
cho tam giác ABC cân tại A. Lấy điểm M trên cạnh BC (MB<MC). Trên tia đối của tia CB lấy điểm N sao cho BM=CN. Đường thẳng qua M vuông góc với BC cắt AC tại E. Đường thẳng qua N vuông góc với BC cắt AC tại F.
a) Chứng minh EM=FN
b) Qua E kẻ ED//AC (D thuộc BC). Chứng minh MB=MD
c) EF cắt BC tại O. Chứng minh OE=OF
Cho tam giác ABC cân tại A . Lấy điểm M trên cạnh BC (MB MC). Trên tia đối của tia CB lấy điểm N sao cho BM CN . Đường thẳng qua M vuông góc với BC cắt AB tại E . Đường thẳng qua N vuông góc BC cắt AC tại F .
a) Chứng minh: EM FN
b) Qua E kẻ ED // AC ( D BC ). Chứng minh MB< MD .
c) EF cắt BC tại O . Chứng minh OE= OF .
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Help me!!!
cho tam giác ABC vuông tại A kẻ AH vuông góc BC trên tia đối AH lấy D sao cho Ad = BC trên tia đối của tia CA lấy E sao cho AB= CE qua A kẻ đường thẳng vuông góc với BD tại I cắt DE tại K chứng minh BDE vuông cân
cho tam giác ABC vuông tại A kẻ AH vuông góc BC trên tia đối AH lấy D sao cho Ad = BC trên tia đối của tia CA lấy E sao cho AB= CE qua A kẻ đường thẳng vuông góc với BD tại I cắt DE tại K chứng minh BDE vuông cân