Cho tam giác đều ABC , các đường cao AD , BE , CF cắt nhau tại H . Gọi I , K , M theo thứ tự là trung điểm của HA , HB , HC . Chứng minh rằng DKFIEM là lục giác đều.
Giups mik mới
Cho tam giác đều ABC , các đường cao AD , BE , CF cắt nhau tại H . Gọi I , K , M theo thứ tự là trung điểm của HA , HB , HC . Chứng minh rằng DKFIEM là lục giác đều
Giups mik với mik đang cần gấp
Cho tam giác đều ABC , các đường cao AD , BE , CF cắt nhau tại H . Gọi I , K , M theo thứ tự là trung điểm của HA , HB , HC . Chứng minh rằng DKFIEM là lục giác đều
Giups mik với mik đang cần gấp mik cảm ơn
Cho tam giác ABC. Gọi M, N, P theo thứ tự là trung điểm của BC, CA, AB. Các đường trung trực của tam giác gặp nhau tại O. Các đường cao AD, BE, CF gặp nhau tại H. Gọi I, K, R theo thứ tự là trung điểm của HA, HB, HC.
a) Chứng minh: HO và IM cắt nhau tại Q là trung điểm của mỗi đoạn.
b) Chứng minh: QI = QM = QD = OA/2
c) Hãy suy ra các kết quả tương tự như kết quả ở câu b.
Cho tam giác ABC. Gọi M, N, P theo thứ tự là trung điểm của BC, CA, AB. Các đường trung trực của tam giác gặp nhau tại O. Các đường cao AD, BE, CF gặp nhau tại H. Gọi I, K, R theo thứ tự là trung điểm của HA, HB, HC
a) Chứng minh: HO và IM cắt nhau tại Q là trung điểm của mỗi đoạn.
b) Chứng minh: QI = QM = QD = OA/2
c) Hãy suy ra các kết quả tương tự như kết quả ở câu b.
CHo tam giác ABC , Gọi M,N,P theo thứ tự là trung điểm của BC,CA,AB. Các đường trưng trực của tam giác gặp nhau tại O. Các đường cao AD,BE,CF gặp nhau tại H. Gọi I,K,R theo thứ tự là trung điểm của HA , HB,HC
a) C/m HO và IM cắt nhau tại Q là trung điểm của mỗi đoạn
b) C/m QI=QM=QD=OA/2
c)Hãy suy ra các kết quả tương tự như kết quả ở câu b
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
Cho tam giác ABC: M, N, P là trung điểm của BC, CA, AB; O là giao điểm của 3 đường trung trực; các đường cao AD, BE, CF cắt nhau tại H; I, K, R là trung điểm của HA, HB, HC. Chứng minh rằng I, K, R, M, N, P, D, E, F cùng thuộc 1 đường trong ơ-le
Giúp mình với :::
1) Cho tam giác nhọn ABC có các đường cao AD; BE; CF cắt nhau tại H.
a) CMR: Điểm H cách đều các cạnh của tam giác DEF.
b) Gọi I; K; M; N theo thứ tự là chân các đường vuông góc kẻ từ D đến BA; BE; CF; CA. Chứng minh rằng: I; K ;M ;N thẳng hàng.