TRẢ LỜI NHANH trong 10 PHÚT và Nhận thưởng
cho tam giác DEF vuông tại D có DE = 12 cm EF = 20 cm Kẻ DH vuông góc EF (H thuộc EF.)
a, Tính DF
b, Chứng minh tam giác EDF đồng dạng với tam giác DHF. Từ đó suy ra DF^2=FH.EF
cho tam giác DEF vuông tại D, DH là đường cao. Kẻ AH ⊥ DE(A∈DE),HB⊥DF(B∈DF). Gọi O là trung điểm EF, I là giao điểm DH và AB. Chứng minh góc IHB = góc IBH
Bài 1: Cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Bài 2: Cho tam giác ABC với 3 góc nhọn, trong đó góc A=30 độ. Lấy D là điểm bất kì trên BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC, EF cắt AB, AC theo thứ tự M,N. a) Chứng minh tam giác AEF đều b) Chứng minh DA là phân giác của góc MDN c) DE, DF lần lượt cắt AB, AC tại P,Q chứng minh MN//PQ
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. Vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG
cho tam giác DEF vuông tại D có DE < DF, đường phân giác EM ( E thuộc DF ) , đường cao DH ( H thuộc EF) . EM cắt DH tại K
a) Chứng minh EHK đồng dạng EDM và góc EKH= góc EMD
b) Chứng minh EK/EM = DK/MF
c) Chứng minh HK.MF=DK2
1, Cho tam giác DEF vuông tại D. M là trung điểm EF kẻ MI vuông góc DE, MK vuông góc DF a, Tứ giác DIMK là hình chữ nhật b, Trên tia đối MD lấy H: MD=MH. Chứng minh DEHF là hình chữ nhật
Cho tam giác ABC vuông tại A (AB < AC) D là trung điểm của BC. Kẻ DE vuông góc với AB tại E và DF vuông góc với AC tại F. a) Chứng minh tứ giác AEDF là hình chữ nhật b) Trên tia đối của tia FD lấy điểm G sao cho FG = FD . Chứng minh tứ giác ADCG là hình thoi. c) Gọi H là trung điểm của AD. Trên cạnh AG lấy điểm I (khác điểm A) sao cho HI = HF Chứng minh AI vuông góc với DI