Cho tam giác DEF vuông tại D, đường cao DH, biết DE= 12 cm và EF = 20 cm. Vẽ AH vuông góc với DE tại A,HB vuông góc với DF tại B. Gọi K là trung điểm của EF và M là trung điểm của DK Tính độ dài AM
Cho tam giác DEF vuông tại D, đường cao DH. Gọi I. K lần lượt là hình chiếu của điểm H trên các cạnh DE và DF. Biết FH = 4cm, HE = 9cm.
a, Tính DE, DF, IK
b, Chứng minh: DI . DE = DK . DF
c, Gọi M, N lần lượt là trung điểm của HE và HF. Tính diện tích tứ giác IKMN.
Cho tam giác ABC đường phân giác AD,trung tuyến AM.Qua điểm I thuộc đoạn thẳng AD,kẻ HI vuông góc với AB,IK vuông góc với AC.Gọi N là giao điểm của HK và AM .Chứng minh NI vuông góc với BC
Cho tam giác DEF vuông tại D, có đường cao DA. Gọi C, K lần lượt là trung điểm của DF và FA. Qua A kẻ đường thẳng vuông góc với DK, đường thẳng này cắt DE tại H. Chứng minh EH^2=AE.EF
Cho tam giác ABC vuông tại A , đường trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC tại B ở D , cắt đường thẳng vuông góc với BC tại C ở E . Tia EM cắt tia DB ở I . gọi P và Q lần lượt là giao điểm của AB và DM của AC và ME . Chứng minh :
a. Tam giác MCE = tam giác MBI
b. Tam giác DIE là tam giác cân
c. DE = BD+CE
d. PQ song song với BC và PQ = 1/2 BC
Cho tam giác DEF nhọn, đường cao cao DH. Gọi K là điểm đối xứng với H qua DE, I là điểm đối xứng với H cưa DF, C là giao điểm của KI và DE. Chứng minh
a) DI = DK
b) FC vuông góc DE
mình biết giải câu a rồi còn câu b có ai giúp ình giải với
Cho tam giác ABC nội tiếp đường tròn tâm o (AB<AC) diemrd M l;à trung điểm của cạnh BC . đường phân giác trong góc BAC cắt BC ở D vá cắt đường tròn O ở P ( P khác A ) GỌI E đối xững với D qua M .qua D kẻ đường thẳng vuông góc với BC cắt AO ở H qua E kẻ đường vuông góc với BC cắt AD ở F .gọi K là giao cảu PE và DH
1)CHỨNG MINH TỨ GIÁC DEFK LÀ HÌNH CHỮ NHẬT
2)CHỨNG MINH DB.DC=DA.DP=DH.DK TỪ ĐÓ SUY RA BHCK NỘT TIẾP ĐƯỜNG TRÒN TAM I
3)GỌI T LÀ GIAO AD VÀ (I)9T KHÁC F) CHỨNG MINH HT VUÔNG GÓC VỚI AD
4)ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC MTP CẮT TH Ở Q ( KHÁC T) CHỮNG MINH QA TIẾP XÚC VỚI (O)
Cho tam giác ABC vuông ở A, AC=6, gócC=30 độ. Vẽ (O) đường kính AC cắt BC tại D, dây DE vuông góc AC tại H. Qua B vẽ tiếp tuyến của (O) tại M.
a. Tính BC và chứng minh tam giác CDE đều.
b. Chứng minh: tam giác BDM đồng dạng tam giác BMC.
c. Gọi K là hình chiếu của H trên EC và I là trung điểm HK. Chứng minh: DK vuông góc CI.
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn