Ta có hình vẽ sau:
a) Ta có \(\Delta DEF\)vuông tại E
=> ED2+EF2=DF2 ( Theo định lý Py-ta-go)
=> 82+62=DF2
=> DF2=100
=> DF=10(cm)
Vậy DF=10cm
b) Xét \(\Delta DKE\)và \(\Delta DKA\):
DK: cạnh chung
\(\widehat{EDK}=\widehat{ADK}\left(gt\right)\)
\(\widehat{DEK}=\widehat{DAK}=90^o\)
=> \(\Delta KDE=\Delta KDA\left(ch-gn\right)\)
=> DE=DA( 2 cạnh t/ứ)
=> đpcm
c) Ta có: \(\Delta DEK=\Delta DAK\)(cm câu b)
=> EK=AK( 2 cạnh t/ứ)
Xét \(\Delta EKB\)vuông tại E có: KB>KE
=> KB> AK
d) Xét \(\Delta EKB\)và \(\Delta AKF\):
\(\widehat{BEK}=\widehat{FAK}=90^o\)
EK=AK( cm câu c)
\(\widehat{EKB}=\widehat{FKB}\left(đđ\right)\)
=> \(\Delta BEK=\Delta FAK\left(g.c.g\right)\)
=> EB=AF (2 canh t/ứ)
Lại có DE=DA(cm câu b)
=> DE+EB=DA+AF
=> DB=DF
=> \(\Delta DBF\)cân ở D
=> \(\widehat{DBF}=\frac{180^o-\widehat{BDF}}{2}\left(1\right)\)
Mà \(\Delta DEA\)cân ở D(DE=DA)
=> \(\widehat{DEA}=\frac{180^o-\widehat{EDA}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{DBF}=\widehat{DEA}\)
Mà 2 góc này ở vị trí đồng vị
=> EA//BF
=> đpcm
P/s: Mệt quá O.O''