a: Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
Do đó: ΔDEK=ΔDFK
b: Ta có: ΔDEF cân tại D
mà DK là đường trung tuyến
nên DK là đường phân giác
c: \(\widehat{F}=\widehat{E}=50^0\)
\(\widehat{EDF}=180^0-2\cdot50^0=80^0\)
a: Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
Do đó: ΔDEK=ΔDFK
b: Ta có: ΔDEF cân tại D
mà DK là đường trung tuyến
nên DK là đường phân giác
c: \(\widehat{F}=\widehat{E}=50^0\)
\(\widehat{EDF}=180^0-2\cdot50^0=80^0\)
Cho tam giác DEF có DE=DF. Tia phân giác của góc D cắt EF tại K. Chứng minh:
a) Tam giác DEK bằng tam giác DFK
b) DK là đường trực của đoạn thẳng EF
c) Qua điểm E, kẻ đường thẳng song song với DF cắt đường thẳng DK tại H. Chứng ming EF là tia phân giác của góc DEF.
cho tam giác cân DEF(DE=DF). gọi M và N lần lượt là trung điểm của DE và DF.
a) chứng minh EM=FN và góc DEM= góc DFN
b) gọi giao điểm của EM và FN là K. chứng minh KE=KF
c) chứng minh DK là phân giác của góc EDF và DK kéo dài đi qua trung điểm H của EF
cho tam giác DEF có DE = DF, vẽ DH vuông góc với EF (H thuộc EF), biết số đo góc EDF là 40*
a. Chứng minh tam giác ADH = tam giác DFH
b. Tính số đo góc EDH
c. Gọi K là hình chiếu của điểm F trên cạnh DE. Hãy so sánh hai góc KDH vsf KFH
Cho tam giác DEF có góc D = 600. Tia phân giác của góc E cắt DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF
a) Tính số đo góc EOF và chứng minh OP = OQ
b) Tìm thêm điều kiện của tam giác DEF để 2 điểm P và Q cách đều đường thẳng EF.
Cho tam giác DEF có DE DF tia phân giác của góc EDF cắt EF tại điểm MA Chứng minh tam giác DEM bằng tam giác FDMB vẽ MH vuông góc với DE tại H, DK vuông góc với DF tại K Chứng minh tam giác DMH bằng tam giác DMK
cho tam giác DEF vuông tại D; EM là tia phân giác của góc E (M thuộc DF). Qua M kẻ MK vuông góc với EF ( K thuộc EF). a) Chứng minh: MD=MK b) Gọi P là giao điểm của MK và DE. Chứng minh EM vuông góc PF và PF song song với DK
Câu 2: Cho tam giác DEF cân tại D (D<90°). Vẽ EH ⊥DF tại H, FK ⊥DE tại K. Gọi O là giao điểm của EH và FK.
a) Chứng minh rằng △KEF=△HFE, DH =DK
b) Chứng minh rằng DO là tia phân giác của góc EDF .
c)Chứng minh rằng HK//EF
d) Gọi I là trung điểm cạnh EF. Chứng minh rằng D, O, I thẳng hàng.
cho tam giác DEF ( DE=DF) . Gọi M và N lần lượt là trung điểm của DE và DF.
a) Chúng minh EM=FN và góc DEM =góc DFN
b) EM cắt FN tại K .C/M KE = KF
C) C/m DK là tia phân giác của góc EDF và DK đi qua trung điểm H của EF
Cho tam giác EDF cân tại E. Trên tia đối của tia DF lấy điểm A, trên tia đối của tia FD lấy điểm B sao cho AD=BF.
a, Chứng minh: Tam giác EAD= tam giác EBF.
b, Kẻ DM vuông góc AE ( M thuộc AE); FN vuông góc BE (F thuộc BE). Chứng minh: MD= NF.
c, Gọi K là giao điểm của MD và NF. Chứng minh: Tam giác KDF cân.
d, Khi góc DEF=60° và AD=DF=FB. Tính góc DKF.
Vẽ hình giúp mình nữa nha (ko có cũng được ạ)
Thank mn~~