Cho tam giác ABC vuông tại A có đường phân giác là BD và đường cao là AH(De AC, He BC). Gọi K là giao điểm của AH và BD. Biết AD = 4cm và CD = 8m Tinh AK
Bài 6. (3 điểm) Cho tam giác ABC vuông tại A có AB=6cm,BC =10cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính độ daif AH, HC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC , AI vuong góc BD . Gọi K là giao điểm của HI và AC. Chứng minh: BI .BD = BH.BC và KI .KH = KD.KC.
Cho tam giác ABC có AB bằng 3,6 cm AC bằng 4,8 cm BC = 6
a.Chứng minh tam giác ABC vuông tại A Tính các góc B, C và đường cao AH
b, Gọi BD là phân giác của góc B. Tính tỉ số diện tích của tam giác ABD và tam giác BDC.
Cho tam giác ABC có đường cao AH = 5 ; đường phân giác BD = 6 , gọi E là giao điểm của AH và BD biết EH = 1 . Tính độ dài các cạnh của tam giác ABC
Bài 1: Cho tam giác ABC (AC>AB) đường cao AH Gọi D E K theo thứ tự trung điểm của của AB AC BC. Chứng minh rằng
a. DE là trung trực của AH
b. DEKH là hình thang cân
Bài 2: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH=12 cm, BC=18 cm
cho tam giác nhọn ABC nội tiếp đường tròn (O;R) (AB>AC ) . gọi H là giao điểm của 2 đường cao BD và CE của tam giác ABC , F là giao điểm của AH và BC .a) CM tứ giác BEHF nội tiếp . b) CM FA*FH =FB *FC . vẽ đường kính AI của đường tròn (O) . gọi K là điểm đối xứng của H qua BC . CM tứ giác BIKC là hình thang cân
Cho tam giác ABC(AB<AC) vẽ hai đường cao IC và BD gọi h là giao điểm của IC và BD ah cắt BC tại I a )chứng minh tứ giác bcde là tứ giác nội tiếp. b )chứng minh ae nhân ab = ad nhân AC. c)chứng minh EC là tia phân giác của góc ied( giúp mình câu c)
Cho các đường cao tại A và B của tam giác ABC cắt nhau tại H(góc C khác 90°)và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E
1.Kẻ đường kính AG.Chứng minh BHCG là hình bình hành
2.Gọi I là giao của HG và BC. Chứng minh AH=2OI(O là tâm đường tròn ngoại tiếp tam giác ABC)
3.Gọi K là giao của AD và BC,M là giao của BE và AC. Chứng minh rằng KM//ED
4'.Cho BC cố định,A di động trên cung BC lớn. Chứng minh H thuộc 1 đường cố định
5.Cho góc BÁC bằng 60°. Chứng minh rằng AH=Ao
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE; AH cắt BC tại I.
a) Chứng minh AI vuông góc với BC và EC là phân giác của góc IED.