chứng minh tam giác BMD cân nhờ các bạn giải hộ mình vs
chứng minh tam giác BMD cân nhờ các bạn giải hộ mình vs
1. Cho đường tròn ( 0; R) đường kính BC, Điểm A thuộc đường tròn. hạ AH vuông góc BC; HE vuông góc AB; HF vuông góc AC. Đường thẳng EF cắt Đường tròn tại M, N.
a Chứng minh tứ giác AEHF là hình chữ nhật
b. Chứng minh AE. AB = A F . AC
c. Chứng minh tam giác AMN cân
d. Cho BC cố định điểm A chuyển động trên cung lớn BC. Chứng minh đường tròn tâm (A. AM) luôn tiếp xúc với một đường thẳng cố định.
2.
Cho tam giác ABC vuông tại A (AB<AC).Vẽ đường tròn tâm O đường kính BC.
a)CM: A nằm trên đường tròn tâm O.
b) Từ A hạ đường thẳng với BC cắt đường tròn tâm O tại N.CM: Tam giác ACN cân.
c) Từ A kẻ tiếp tuyến với đường tròn tâm O cắt CB kéo dài tại M.CM: MN là tiếp tuyến của đường tròn tâm O .
cho tam giác ABC đều nội tiếp đường tròn (O). M thuộc cung nhỏ AC . từ B kẻ BI vuông góc vs AM , đường thẳng này cắt đường thẳng CM tại D. a) CM góc AMB = góc AMD.
b) CM MB=MD
c) gọi E là giao điểm BM và AC. CM EA x EC=EB x EM
d) CMR khi điểm M chuyển động trên cung AC thì điểm D chuyển động trên 1 đường tròn cố định
Cho tam giác ABC cân ở A , góc A nhọn. Đường vuông góc với AB tại A cắt đường thẳng BC ở E. Kẻ EN vuông góc vs AC. Gọi M là trung điểm BC. Hai đường thẳng AM và EN cắt nhau ở F.
a, Tìm nhữg tứ giác có thể nội tiếp đường tròn. Giải thích vì sao? Xác định tâm các đường tròn đó
b, CM: EB là tia phân giác của góc AEF
c, CM: M là tâm đường tròn ngoại tiếp tam giác AFN
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O bán kính R tiếp xúc với AB,AC tại B,C.Đường thẳng qua điểm m trên BC vuông góc OM cắt tia AB,AC tại D,E
a) CM: 4 điểm O,B,D,M cùng thuộc 1 đường tròn
b) CM: MD=ME
Cho (O;R) và một cát tuyến d không đi qua tâm O. Từ một điểm M trên d và ở ngoài (O) ta kẻ hai tiếp tuyến MA và MB với đường tròn; BO kéo dài cắt (O) tại điểm thứ hai là C. Gọi H là chân đường vuông góc hạ từ O xuống d. Đường thẳng vuông góc với BC tại O cắt AM tại D.
1. CM: A;O;H;M;B cùng nằm trên 1 đường tròn.
2. CM: AC song song MO và MD=OD
3. Đường thẳng OM cắt (O) tại E và F . Chứng tỏ MA^2 = ME.MF
4. Xác định vị trí của điểm M trên d để tam giác MAB là tam giác đều. Tính diện tích phần tạo bởi hai tiếp tuyến với đường tròn trong trường hợp này.