a) Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)
Do đó: MN//BC(Định lí Ta lét đảo)
Xét tứ giác BMNC có MN//BC(gt)
nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang BMNC(MN//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét tứ giác AKCH có
N là trung điểm của đường chéo HK(gt)
N là trung điểm của đường chéo AC(Gt)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AHCK là hình bình hành(cmt)
nên AK//HC và AK=HC(1)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AK//BH và AK=BH
Xét tứ giác AKHB có
AK//BH(cmt)
AK=BH(cmt)
Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)