cho tam giác abc có ab=36cm; bc=36cm;ac=24cm, đường phân giác bd (b thuộc ac )
a, tính ad,dc
b, từ d kẻ de// bc ( e thuộc ab ). tính ae,eb
cho tam giác ABC vuông tại A có AB= 3 cm : AC=4cm vẽ đường cao AH(AH thuộc BC)
a) CM tam giác ABC đồng dạng với tam giác HAC
b)tính BC,AH
c)BD là tia phân giác của B(D thuuocj AC),E là giao điểm của AH và BD CM BD.HE=BE.AD
CM AE=AD
Cho tam giác ABC vuông tại A, AB>AC, vẽ đường cao AH. Vẽ phân giác BD là tia phân giác góc ABC ( D thuộc AC), AE là tia phân giác góc HAC ( E thuộc BC). Chứng minh DE song song AH
BÀI 1: Tam giác ABC vuông tại A, ĐƯỜNG PHÂN GIÁC bd. Tính AB,AC biết rằng AD=4cm, DC=5 cm
Bài 2: Tam giác ABC có AB=30cm, AC=45cm, BC=50cm, đương phân giác BD
a)Tính BD, BC
b)Qua D vẽ DE//AB,DF//AC, E và F thuộc AC và AB. Tính các cạnh của tứ giác AEDF
Bìa 3: Tam giác ABC vuông tại A, AB =36cm, AC= 48cm, đường phân giác AK. Tia phân giác của góc B cắt AK tại I. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC ở E.
a)Tính độ dài BK
b)Tính tỉ số AI/AK
c) Tính độ dài DE
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD a) chứng minh tam giác ABC đồng dạng với tam giác HAC b) tính AH c) chứng minh AD = AE
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD
a) chứng minh tam giác ABC đồng dạng với tam giác HAC
b) tính AH
c) chứng minh AD = AE
Cho tam giác ABC vuông tại A, kẻ đường cao AH (H thuộc BC). Biết AB = 6cm; AC = 8cm.
a. Chứng minh: tam giác HBA đồng giạng với tam giác ABC
b. Tính BC, AH, BH.
c. Kẻ BD là đường phân giác trong của góc ABC (D thuộc AC). Gọi I là giao điểm của BD và AH. Tính tỉ số diện tích của tam giác ABD và tam giác BCD
d. Chứng minh rằng: AD.AI = CD.HI
cho tam giác ABC vuông tại A có góc B=60 độ AC=15cm kẻ phân giác BD của góc B
a) Tính AD,DC,BD
b) E thuộc AB sao cho AE/AD=1/3. c/m DE//BC và DE là p/g góc ngoài góc ADB
giúp mk nhanh với ạ
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho ∆ABC vuông tại A, có AB=20cm, AC=15cm. Về đường cao AH (H thuộc BC)
a. Chứng minh: ∆HBA~∆ABC
b. Tính BC, AH, BH
c. Tia phân giác góc BAC cắt AC tại D. Tính tỉ số diện tích của 2 tam giác ABD và ACF
d. Trong ∆ABC kẻ phân giác AD (D thuộc BC). Trong ∆ADB kẻ phân giác DE (E thuộc AB) và trong ∆ADC kẻ phân giác DF (F thuộc AC). Chứng minh rằng EA/EB×DB/DC×FC/FA=1