Cho tam giác ABC(AB<AC),đường phân giác BI
a)Giả sử AB=6cm,BC=10cm.Tính IA,IC
b)Qua I kẻ IK//AB(K thuộc BC).Chứng minh:AB.IC=AC.IK
c)Tính IK vs S tam giác IKC
d)Tính S tam giác IKC/S tam giác ABC.
Cho tam giác ABC vuông tại A có AB=15cm , AC=20cm. Kẻ đường cao AH . gọi I và K là hình chiếu của H trên AB , AC .
a) chưng minh AK.AC=HB.HC
b) tính IK
c) tính S tam giác AIK / S tam giác ABC
d) chưng minh IH^3 / IA^3 = IB/KC
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC) a/ Tính DB, DC. b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA c/ tính S tam giác AHB, tam giác CHA
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Cho AB = 15cm, AC = 20cm a, Chứng minh CA^2 = CH.CB b, Kẻ AD là tia phân giác của góc BAC (D thuộc BC). Tính HD c, Trên tia đối của tia AC lấy I bất kì. Kẻ AK vuông góc với BI tại K. Chứng minh tam giác BHK đồng dạng tam giác BIC d, Cho AI = 8cm. Tính S tam giác BHK
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC).Biết AB =6cm,Bc=10cm
a,chứng minh rằng tam giác HBA đồng dạng vs tam giác ABC
b,Tính AC,AH,HB
c,I và K lần lượt là hình chiếu của điểmH lên AB, AC. CHứng minh rằng AI .AB=AK.AC
d,Vẽ phân giác của tam giác AD của tam giác ABC ( D thuộc BC).Đường phân giác DE của tam giác ABD(E thuộc AB),đường phân giác DF của tam giác ADC(F thuộc AC) chứng minh rằng EA/EB*DB/DC*FC/FA=1
Cho tam giác ABC vuông tại A có đường cao AH, phân giác BD a) Chứng minh tam giác ABC đồng dạng tam giác HBA và AB^2 = BH .BC b) Giả sử AB = 6cm; AC = 8cm. Tính BC và AH. c) BD cắt AH tại E. Chứng minh AD.AE = CD.EH d) Lấy điểm K đối xứng với H qua A. Chứng minh rằng đường thẳng đi qua C và vuông góc với BK sẽ chia tam giác ACH thành hai phần có diện tích bằng nhau.
Bài 1:Cho tam giác ABC vuông góc tại A, đường cao AH, phân giác AI của góc HAC
a) Chứng minh tam giác ABI là tam giác cân
b) Cho AB=7,5cm, AC=10 cm. Tính BC,AH,HI,HC,IC
c) Phân giác BE của góc ABC cắt AH tại K(E thuộc AC). Chứng minh IK//AC và tính AE,BE
d) Gọi P là trung điểm của AB. Chứng minh CP đi qua trung điểm của đường vuông góc hạ từ H tới AC
Bài 2: Cho tam giác ABC vuông góc tại C. Gọi M lá trung điểm của AB. Kẻ MD vuông góc CA, ME vuông góc CB
a) Tứ giác CDME là hình gì ? Vì sao ?
b) Gỉa sử AC =5cm, CB =12cm. Tính DE
c) Kẻ đường cao CH của tam giác ABC. Tính CH nếu AC =12cm, AB=15cm
d) Chứng minh CH vuông góc DE
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a/ Tính DB, DC.
b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA
c/ tính S tam giác AHB, tam giác CHA