Chứng minh được B M ⏜ = M C ⏜ => AM là phân giác trong
Mặt khác: M A N ^ = 90 0
=> AN là phân giác ngoài
Chứng minh được B M ⏜ = M C ⏜ => AM là phân giác trong
Mặt khác: M A N ^ = 90 0
=> AN là phân giác ngoài
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Vẽ đường kính MN ^ BC (điểm M thuộc cung BC không chứa A). Chứng minh các tia AM, AN lần lượt là các tia phân giác các góc trong và các góc ngoài tại đỉnh A của tam giác ABC
Cho tam giác ABC nội tiếp (O). Vẽ đường kính MN vuông góc BC. Chứng minh AM, AN lần lượt là các tia phân giác các góc trong và các góc ngoài tại đỉnh A của tam giác ABC
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
Hai người cùng làm chung một công việc thì trong 4 giờ xong việc. Nếu người thứ nhất làm một mình trong 1 giờ rồi nghỉ, sau đó người thứ hai làm tiếp trong 3 giờ thì được12/5 công việc. Hỏi mỗi người làm một mình xong công việc ấy trong bao lâu?
Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH, đường kính AM.
1. Tính góc ACM.
2. Chứng minh: AB.AC = AH.AM và góc BAH = góc ACO.
3. Gọi N là giao điểm của AH với (O). Tứ giác BCMN là hình gì? Vì sao?
4. Vẽ đường kính PQ vuông góc với BC (P thuộc cung BC không chứa A). Chứng minh các tia AP, AQ lần lượt là các tia phân giác góc trong và góc ngoài tại đỉnh A của tam giác ABC.
mọi ng giúp mk nha. mk cần rất gấp luôn ý
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC nội tiếp đường tròn tâm O . Gọi D,E lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C . Đường thẳng DE cắt BC tại I,cắt cung nhỏ BC ở M .Chứng minh : a.Ba điểm A,D,E thẳng hàng .b.Tứ giác BDCE nội tiếp được trong đường tròn .c.BI.IC=ID.IE
. Cho tam giác ABC (AB <AC) nội tiếp đường tròn (O) có BC là đường kính, vẽ
đường cao AH của tam giác ABC.H thuộc BC
b) Tiếp tuyến tại A của đường tròn (O) cắt các tiếp tuyến tại B và C lần lượt tại M và
N. Chứng minh: MN = MB + NC và
0 MON 90 .
c) Trên cạnh AC lấy điểm E sao cho AB = AE. Gọi I là trung điểm của BE. Chứng
minh 3 điểm M, I, O thẳng hàng.
d) Chứng minh: HI là tia phân giác của góc AHC
Làm mk câu cd thui nha
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME