câu 1 : Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn sao cho OM=2R . Đường thẳng d đi qua M và tiếp xúc với đường tròn (O;R) tại A . Gọi N là giao điểm của đoạn thẳng MO với đường tròn (O;R)
1) Tính đọ dài đoạn thẳng An theo R . Tính số đo góc NAM
2) Kẻ hai đường kính AD và CD khac nhau của đường tròn (O;R) . Các đường thẳng BC,BD cắt đường tahnwgr d lần lượt tại P,Q .
a) c/m tứ giác PQDC là tứ giác nội tiếp
b) c/m 3BQ - 2AQ > 4R
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABE và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của BG và CG
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Tam giác ABC có điều kiện gì thì tứ giác MNPQ là hình chữ nhật
c) Nếu các đường trung tuyến BM và CN vuông góc với nhau thì tứ giác MNPQ là hình gì? Vì sao?
cho tam giác ABC cân tại A.Kẻ AI vuông góc với BC
a) cmr I là t.điểm của BC
b) lấy điểm E thuộc AB và điểm F thuộc AC sao cho AE=AF.CMR tam giác IEF cân
c) CMR tam giác EBI= tam giác FCI
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3 Mặt phẳng α qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
A. V = 64 2 π 3
B. V = 125 π 6
C. V = 32 π 3
D. V = 10 Sπ 3
Cho hình chóp S . A B C D có SA vuông góc với mặt phẳng (ABC), đáy ABC là tam giác cân tại A và B A C ^ = 120 ° , B C = 2 a . Gọi M. N lần lượt là hình chiếu của điểm A trên SB, SC. Tính bán kính mặt cầu đi qua bốn điểm A, N, M, B.
A. 2 a 3 3
B. 2 a 3
C. a 3 2
D. a 3
Cho tg ABC vuông tại A, phân giác BM. Kẻ MN vuông góc với BC (n thuộc BC). Gọi I là giao điểm của BA và NM. Chứng minh rằng:
a) tg ABM= tg NBM
b) BM là đường trung trực của AN
c) MI=MC
d) AM< MC
TẶNG 3 LIKE ~~~~~
Cho hình chóp S.ABC có đáy ABCD là tam giác vuông tại C, AB= 5 a,AC=a. Cạnh SA=3a và vuông góc với mặt phẳng đáy. Thể tích khối chóp S.ABC bằng
A. a 3
B. 5 2 a 3
C. 2 a 3
D. 3 a 3
Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông cân tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.
A. V = 7 a 3 .
B. V = 6 2 a 3 .
C. V = 8 a 3 .
D. V = 6 a 3 .