a: ΔBAC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)
=>\(\widehat{IAC}+\widehat{ICA}=45^0\)
Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)
=>\(\widehat{CIA}=180^0-45^0=135^0\)
b: CI và CK là hai tia phân giác của hai góc kề bù
=>\(\widehat{ICK}=90^0\)
\(\widehat{CIK}+\widehat{CIA}=180^0\)
=>\(\widehat{CIK}=45^0\)
Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)
nên ΔCKI vuông cân tại C
=>\(\widehat{CKI}=\widehat{CKA}=45^0\)