Cho tam giác ABC vuông tại b, đường cao BH.
a,CM: tam giác ABH đồng dạng với tam giác ACD suy ra AB2AB2=AH.AC
b, tính AC, BH biết AB=6cm, BC=8cm
c, đường phân giác của góc CAB cắt BH và BC tại D và E. CM: DH.EC=EB.DB
d, gọi I, K lần lượt là hình chiếu của H lên AB và BC. CM:BH3BH3= AI.CK.AC
câu d thôi nhé
Cho hình chữ nhật ABCD, kẻ BH vuông góc với đường chéo AC (H thuộc AC).
a) Chứng minh tam giác ABH đồng dạng với tam giác ACB
b, tính AH,HB biết AB=6cm,BC=8cm
c, gọi K,E,F lần lượt là trung điểm của CH,BH,AD chứng minh HE.AB=HA.EK và tính số đo cảu BKF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC, góc A = 900, AH vuông góc BC, AB = 6cm, AC = 8 cm, phân giác của góc B cắt AH tại I, cắt BC tại D
1. Tính BC, AD, DC
2. CM tam giác ABC đồng dạng với tam giác HBA, tam giác ABI đồng dạng với tam giác CBD
3. CM AB2 = BH . BC, AH2 = HB . HC, \(\dfrac{IH}{IA}\) = \(\dfrac{AD}{BC}\)
cho tam giác ABC vuông tại A , đường cao AH(H thuộc BC) . biết BH bằng 4 cm; CH bằng 9 cm. gọi I, K lần lượt là hình chiếu của H lên AB và AC . chứng minh rằng:
a) tứ giác AIHK là hình chữ nhật
b) tam giác AKI đồng dạng với tam giác ABC
c) tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH=4cm, CH=9cm. Gọi I và K lần lượt là hình chiếu của H lên AB và AC a. Chứng minh tứ giác AIHK là hình chữ nhật b. Cm tam giác AKI đồng dạng với tam giác ABC c. Tính diện tích của tam giác ABC
Cho tam giác ABC vuông tại A vẽ đường cao AH , AB = 6cm , AC = 8cm
a, chứng minh tam giác HBA đồng dạng với tam giác ABC
b, tính BC,AH,BH
c, Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB,AC , chứng minh AI*AB=AK*AC
cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6cm AC =8cm. a) CM: tam giác BAH đồng dạng với tam giác BCA. tính BC,BH b) gọi M là trung điểm của AB, N là hình chiếu của H trên AC. CM HN^2=CN*AN c) gọi I là giao điểm của MH và AC. CM CI*AB=2CN*MI