Cho tam giác ABC có AB < AC, tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: Tam giác BDE là tam giác cân và AD là phân giác của góc BDE.
b) Gọi M là giao điểm của BE và AD. Chứng minh M là trung điểm của BE và AD vuông góc với BE.
c) Qua E vẽ đường thẳng song song với AB và cắt đường thẳng AD tại F. Chứng minh: M là trung điểm của AF.
d) Chứng minh: BF song song với AE.
Cho tam giác ABC có AB = AC = BC, D là trung điểm của BC. Trên tia đối của tia BC lấy điểm F, trên tia đối của tia AB, lấy E sao cho AE = BF. Chứng minh:
a. AD là phân giác cua góc BAC
b. AF = CE
c.Cho FA vuông góc với AC. Chứng minh: AD song song với CE
Cho tam giác ABC cân tại A . Vẽ AM vuông góc với BC ( M thuộc BC )
a) Chứng minh tam giác ABM = tam giác ACM
b) trên cạnh AB lấy điểm D , trên cạnh AC lấy điểm E sao cho AD = AE . Chứng minh tam giác ABE = tam giác ACD và DE song song với BC
c) Gọi I là giao điểm của BE và CD . Chứng minh AI là tia phân giác của góc BAC
Cho tam giác ABC có AB < BC và D là trung điểm của AC . Trên tia đối của tia DB lấy điểm E sao cho DE = DB a) chứng minh tam giác ADE tam giác CDB và AE song song BC b) Từ E kẻ tia EX vuông góc với AC tại M . Trên tia EX lấy điểm N sao cho M là trung điểm của EN . Chúng minh DN = BD c) chứng minh BN vuông góc với EX
Cho tam giác ABC vg tại B,AD là đường phân giác góc BAC (D thuộc BC) trên cạnh AC lấy điểm E sao cho AE=AB
a) Chứng minh DE=DB
b) Gọi giao điểm của DE và AB là H.Chứng minh BE//HC
c) Vẽ DI vg góc với CH tại I.Chứng minh A,D,I thẳng hàng
d) Chứng minh:BC<2DC
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE bằng BA.
a) Chứng minh AD = DE và DE vuông góc BC.
b) Gọi I là giao điểm của AE và BD. Chứng minh: BI vuông góc AE.
c) Từ A kẻ AM song song với DE (M thuộc BD) Chứng minh: AE là phân giác góc MAD.
d) Kẻ EK vuông góc AB (K thuộc AB) Chứng minh: E, M, K thẳng hàng
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC có AB = AC, I là trung điểm của BC.
a) Chứng minh AI vuông góc với BC
b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID, chứng minh AB = CD
c) Trên một nửa mặt phẳng bờ là đường thẳng BC, không chứa điểm A, kẻ BE vuông góc với BC, BE = AI. O là trung điểm của BI, chứng minh A, O, E thẳng hàng.
d) Biết góc BEI bằng 400 tính số đo góc ACB.
Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.
a) Chứng minh AH là tia phân giác của góc BAC
b) Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.
Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.
Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.
a) Chứng minh AH là tia phân giác của góc BAC
b) Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.
Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH