a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABH vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABH vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a. Chứng minh rằng AH2 = AD.AB = AE.AC
b. Chứng minh tam giác ABC và tam giác AED đồng dạng
c. Gọi M là trung điểm của BC, N là giao điểm của DE và BC, O là giao điểm của DE và AH. Chứng minh rằng AN vuông góc với MO
Cho tam giác ABC vuông tại A có AH là đường cao Vẽ HD vuông AB ( D Thuộc AB) HE vuông EC ( E thuộc AC). AB= 12 cm, AC= 16cm
a) Chứng minh Tam giác HAC Đồng dạng Tam giác ABC
b) Chứng minh AH^2 = AD.AB
c) Chứng minh tam giác ACB đồng dạng tam giác ADE
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD a) chứng minh tam giác ABC đồng dạng với tam giác HAC b) tính AH c) chứng minh AD = AE
cho tam giác ABC vuông tại A, AB=3cm, AC=4 cm, đường cao AH, BD là phân giác của góc ABC (D thuộc AC). Gọi E là giao điểm của AH và BD
a) chứng minh tam giác ABC đồng dạng với tam giác HAC
b) tính AH
c) chứng minh AD = AE