Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm A
a)Chứng minh tứ giác AMBD là hình thoi
b)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàng
c)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
a: Gọi giao điểm của AB và DM là K
Ta có: D đối xứng M qua AB
=>AB là đường trung trực của MD
=>AB\(\perp\)MD tại K và K là trung điểm của MD
Ta có: MK\(\perp\)AB
AC\(\perp\)AB
Do đó: MK//AC
Xét ΔABC có
M là trung điểm của BC
MK//AC
Do đó: K là trung điểm của AB
Xét tứ giác AMBD có
K là trung điểm chung của AB và MD
=>AMBD là hình bình hành
Hình bình hành AMBD có AB\(\perp\)MD
nên AMBD là hình thoi
b: Xét ΔABC có
M,K lần lượt là trung điểm của BC,BA
=>MK là đường trung bình của ΔABC
=>MK//AC và \(MK=\dfrac{AC}{2}\)
Ta có: \(MK=\dfrac{AC}{2}\)
\(MK=\dfrac{MD}{2}\)
Do đó: AC=MD
mà AC=AE
nên MD=AE
Xét tứ giác AMDE có
DM//AE
DM=AE
Do đó: AMDE là hình bình hành
=>DE//AM
Ta có: DE//AM
BD//AM
DE,BD có điểm chung là D
Do đó: D,B,E thẳng hàng