a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔHBD
Suy ra: DA=DH
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔHBD
Suy ra: DA=DH
cho tam giác abc vuông tại a đường phân giác bd (d thuộc ac). Kẻ dh vuông góc với bc (h thuộc bc) Gọi k là giao điểm của ab và dh. Chứng minh AH //
KCCho tam giác ABC vuông tại A, từ góc B kẻ tia phân giác cắt AC tại D. Kẻ DH vuông góc với cạnh BC ( H thuộc BC). K là giao điểm của hai cạnh AB và DH. Chứng minh rằng.
a) Tam giác ABD và tam giác HBD
b) BD vuông góc với KC
c) So sánh: DK và DH
Cho tam giác ABC vuông tại A , Tia phân giác của góc ABC cắt AC tại điểm D . Từ D kẻ vuông góc với BC tại điểm H
a, chứng minh AD = DH
b, so sánh độ dài AD và DC
c, gọi K là giao điểm của AB và DH
BD là đường trung trực của đoạn thẳng KC
Giải giúp mình phần c với ạ 28 tháng tư cần rồi ạ
cho tam giác abc vuông tại a tia phân giác của góc abc cắt ac tại d từ d kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a/ Chứng minh tam giác KBC cân
b/ Chứng mình BD\(\perp\)KC
c/ AH // KC
Cho tam giác ABC vuông tại A , đường phân giác BD [ D thuộc EC] . Thừ D kẻ DH vuông góc với BC .
a, Chứng minh rằng tam giác ABD = tam giác HBD
b, So sánh AD và BC .
c, Gọi k là giao điểm của AB và DH , I là trung điểm của KC . Chứng minh điểm BDI chẳng hạn.
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
cho tam giác ABC vuông tại A. Tia phân giác góc ABC cắt tại D a) cho BC = 15cm, AB= 9cm, tính độ dài AC b) từ D vẽ DH vuông gốc với BC. Chứng minh tam giác BDH = tam giác BDA. c) gọi I là trung điểm của AB,K là giao điểm của HI và BK. Điểm O là điểm đặc biệt gì của tam giác AH? giải thích?