cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC ở M. Kẻ MD vuông góc BC
a)C/M BA=BD
b)Gọi E là giao điểm của DM và BA. C/M tâm giác ABC =tam giác DBE
c)Kẻ DH vuông góc MC (H vuông góc MC) và AK vuông góc ME (K vuông góc ME). Gọi N là giao điểm của DH và AK. C/M MN là tia phân giác góc HMK.
d)C/M B,M,N thẳng hàng.
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
=>BA=BD và MA=MD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
c: Xét ΔMKA vuông tại K và ΔMHD vuông tại H có
MA=MD
\(\widehat{KMA}=\widehat{HMD}\)
Do đó: ΔMKA=ΔMHD
=>MK=MH và AK=HD
Xét ΔNKM vuông tại K và ΔNHM vuông tại H có
NM chung
MK=MH
Do đó: ΔNKM=ΔNHM
=>NK=NH và \(\widehat{KMN}=\widehat{HMN}\)
=>MN là phân giác của góc HMK
d: NK+KA=NA
NH+HD=ND
mà NK=NH và KA=HD
nên NA=ND
=>N nằm trên đường trung trực của AD(1)
MA=MD
=>M nằm trên đường trung trực của AD(2)
BA=BD
=>B nằm trên đường trung trực của AD(3)
Từ (1),(2),(3) suy ra B,M,N thẳng hàng