a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
c: Xét ΔBKC có BA/AK=BE/EC
nên AE//KC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
c: Xét ΔBKC có BA/AK=BE/EC
nên AE//KC
Cho tam giác ABC vuông tại A (có AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy diểm E sao cho BA=BE
a) Chứng minh tám giác BAD= tam giác BED
b) Chứng minh DE vuông góc BC, DA=DE
c) Gọi F là giao điểm của tia BA và tia ED. Chứng minh tam giác DAF= tam giác DEC
d) Chứng minh BF=BC
e) Gọi M là trung điểm của Fc. Chứng minh B, D, M thẳng hàng
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC . Kẻ tia phân giác của góc ABC cắt AC tại D . Kẻ DE vuống góc với BC tại E . Hai đường thẳng BA và ED cắt nhau tại H . Chứng minh rằng :
a. tam giác ABD = tam giác EBD
b. tam giác ADH = TAM GIÁC edc
c. tam giác AHC = tam giác ECH
d. tam giác BEH =tam giác BAC
*chụp ảnh hình
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Cho tam giác ABC vuông tại A có AB = AC Gọi I là trung điểm của BC D là trung điểm của AC a chứng minh tam giác amb bằng tam giác ABC và AE vuông góc với BC b từ A kẻ đường thẳng vuông góc với BD cắt BC tại D trên tia đối của tia de lấy điểm F sao cho de = AB Chứng minh rằng tam giác ADM bằng C D E Từ đó suy ra AE = AB song song với CD e từ C kẻ đường thẳng vuông góc với AC cắt tại g Chứng minh tam giác ABD bằng tam giác ABC Chứng minh rằng AB = ACG
Câu 5: Cho ABC vuông tại A (AB < AC).Tia phân giác góc ABC cắt AC tại D;vẽ DE
vuông góc BC tại E
a/ Chứng minh tam giác SAD = tam giác BED
b/ AE cắt BD tại H.Chứng minh tam giác BAE cân và H là trung điểm AE
c/ Qua E vẽ đường thẳng song song BD cắt AC tại F;FH cắt DE tại G.Chứng minhDE = 3GD
Cho Tam giác ABC vuông tại A . Vẽ tia phân giác góc B cắt AC tại D ( D thuộc AC) . Kẻ ĐỂ vuông góc với BC tại E
a) Chứng minh: tam giác ABD = tam giác EBD
b) Chứng minh BD là đường trung trực của đoạn thẳng AE.
c) Đường thẳng AB cắt đường thẳng DE tại F . Chứng minh AE // CF
cho tam giác ABC vuông tại B, tia phân giác của góc A cắt BC tại D. Từ D vẽ DE vuông góc với AC (E thuộc AC)
a. Chứng minh BD=DE
b. Hai đường thẳng AB và ED cắt nhau tại F. Chứng minh tam giác ADF = tam giác ADC
c. Chứng minh BA+ BC>DE+AC
1. Cho tam giác ABC cân tại A, có AB= 5cm, BC= 6cm, tia phân giác AD của góc BAC cắt đường trung tuyến BE của tam giác tại G. Tia CG cắt AB tại F
a. So sánh số đo của góc ABC và góc BAC
b. Chứng minh: tam giác ABD= tam giác ACD
c. Chứng minh: F là trung điểm của AB
d. Tính độ dài BG
2. Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC
a. Tính BC
b. Chứng minh: tam giác BDA= tam giác BDE
c. Chứng minh: AD < DC
d. Gọi K là giao điểm của AB và DE. Chứng minh: AE // KC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH