cho tam giác ABC vuông tại A. Phân giác BF .từ I nằm giữa B và F, vẽ đường thẳng song song AC cắt AB,BC lần lượt tại M và N .vẽ đường tròn ngoài tiếp tam giác BIN cắt đường thẳng AI tại D.các đường thẳngDN và BF cắt nhau tại E.
a)chứng minh 4 điểm A,B,D,E cùng thuộc một đường tròn
b)chứng minh 5 điểm A,B,C,D,E cùng thuộc một đường tròn và BE vuông góc CE
a) Vì tứ giác BDNI nội tiếp nên \(\widehat{IDN}=\widehat{IBN}\) ( cùng chắn cung IN )
Mà BF là tia phân giác của \(\widehat{ABC}\Rightarrow\widehat{IBN}=\widehat{IBM}\)
Do đó \(\widehat{IDN}=\widehat{IBM}\)
Mà 2 góc này cùng nhìn cạnh AE nên tứ giác ABDE nội tiếp
=> A, D, B, E cùng thuộc một đường tròn ( đpcm ) (1)
b) Vì tứ giác BDNI nội tiếp nên \(\widehat{DBN}=\widehat{DIN}\) ( cùng chắn cung DN )
Mặt khác do MN // AC nên \(\widehat{DIN}=\widehat{DAC}\)
Do đó \(\widehat{DBN}=\widehat{DAC}\)
Mà 2 góc này cùng nhìn cạnh DC nên tứ giác ABDC nội tiếp
=> A, B, D, C cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra A, B, D, C, E cùng thuộc một đường tròn ( đpcm )
=> tứ giác ABCE nội tiếp
\(\Rightarrow\widehat{BEC}=\widehat{BAC}=90^0\) ( cùng chắn cung BC )
=> BE vuông góc với EC ( đpcm )
( Hình gửi kèm )