Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Cho góc xoy=120 độ, tia Oz nằm giữa hai tia Ox và Oy sao cho góc zOy=24 độ . Gọi Ot là tia phân giác của xOz
1- Kể tên các góc trong hình vẽ
2-Tính góc yOt
Bài 2 Cho góc AOB=90t. Vẽ tia OC nằm giữa hai tia OA và OB. Biết góc AOC=30 độ
1-Tính góc BOC
2-Gọi OM là tia phân giác của AOB, kể tên và tính các góc trong hình vẽ
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go) Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2 Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
Xét tam giác ABC có BC 2=AB 2+AC 2( Định lý Py-ta-go)
Thay số:BC 2=6 2+8 2 BC 2=36+64=100 =>BC=10(cm) b)
vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có: Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn) c)
Gọi giao của AH và BI là K Vì tam giác ABI=tam giác HBI (cmt)
=> AB=HB( 2 cạnh tương ứng) Xét tam giác AKB và tam giác HKB có: AB=HB (cmt) góc ABK=góc HBK(cmt) BK chung =. tam giác AKB= tam giác HKB ( c.g.c) => KB=KH ( 2 cạnh tương ứng) => K là trung điểm của BH (1) Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2) Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH