Cho tam giác ABC vuông tại A. Khi đó trực tâm tam giấc ABC là:
A. Điểm C
B. Điểm B
C. Điểm A
D. Không xác định
Cho tam giác ABC không là tam giác cân. Khi đó trực tâm của tam giác ABC là giao điểm của:
(A) Ba đường trung tuyến;
(B) Ba đường phân giác;
(C) Ba đường trung trực;
(D) Ba đường cao.
Hãy chọn phương án đúng.
Cho tam giác ABC nhọn, AD vuông góc BC tại D. Xác định M, N sao cho AB là trung trực của DM; AC là trung trực của DN. Đoạn thẳng MN cắt AB avf AC lần lượt tại I và K, Chứng minh:
a) Tam giác AMN cân; tam giác BMA vuông
b) DA là phân giác của góc IDK
c) BK vuông góc AC; CI vuông góc AB
d) Trực tâm của tam giác ABC chính là giao điểm của 3 đường phân giác của tam giác IDK
Cho tam giác ABC vuông tại A. Gọi P, Q, R lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi O là giao điểm của ba đường phân giác. Khi đó, tâm đường trong ngoại tiếp tam giác ABC là điểm:
(A) O
(B) P;
(C) Q;
(D) R.
Hãy chọn phương án đúng.
Cho hai tam giác cân chung đáy ABC và ABD, trong đó ABC là tam giác đều. Gọi E là trung điểm của AB. Khi đó, khẳng định nào sau đây là sai?
(A) Đường thẳng CD là đường trung trực của AB.
(B) Điểm E không nằm trên đường thẳng CD.
(C) Đường trung trực của AC đi qua B.
(D) Đường trung trực của BC đi qua A.
Cho tam giác ABC. Trên đường trung tuyến AM của tam giác đó, lấy hai điểm D, E sao cho AD = DE = EM. Gọi O là trung điểm của đoạn thẳng DE. Khi đó trọng tâm của tam giác ABC là:
(A) Điểm D
(B) Điểm E
(C) Điểm O
(D) Cả (A), (B), (C) đều sai
Cho tam giác ABC vuông tại B. Điểm nào là trực tâm của tam giác đó?
Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm
A. Nằm bên trong tam giác
B. Nằm bên ngoài tam giác
C. Là trung điểm của cạnh huyền BC
D. Trùng với điểm A
Cho tam giác ABC vuông tại A. Gọi P, Q, K lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi O là giao điểm của ba đường phân giác của tam giác ABC. Khỉ đó tâm đường tròn ngoại tiếp tam giác ABC là:
A. O.
B. P.
C. Q.
D. R.