C1: Chứng minh DH=AD=1/2AB
HE=AE=1/2AC
tam giác ADE=DHE => DHE=90 độ
C2. Chứng minh Tam giác DHE đồng dạng BAC (c.c.c)
=> DHE=BAC=90 độ
C1: Chứng minh DH=AD=1/2AB
HE=AE=1/2AC
tam giác ADE=DHE => DHE=90 độ
C2. Chứng minh Tam giác DHE đồng dạng BAC (c.c.c)
=> DHE=BAC=90 độ
cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Gọi D,E theo thứ tự là trung điểm của AB và AC. Tính góc DHE?
cho tam giác ABC vuông tại A kẻ AH vuông góc với BC gọi D E là trung điểm của AB AC Tính góc DHE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường
vuông góc kẻ từ H đến AB, AC. Gọi M là trung điểm của BC. Chứng minh AM vuông góc với DE.
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC vuông tại A (AC<AB). Gọi M là trung điểm BC. Kẻ MH vuông góc với AB, MK vuông góc với AC.
a) C/m AKMH là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua H. Tam giác ABC cần điều kiện gì để AMBN là hình vuông
c) Trên cạnh AB lấy D sao cho AD=AC. Gọi E là giao điểm của CD và MK. Kẻ AF vuông góc với BC. Tính góc AFE?
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường
vuông góc kẻ từ H đến AB, AC. Từ A kẻ đường thẳng vuông góc với DE, đường thẳng này cắt cạnh BC
tại điểm M. Chứng minh: M là trung điểm của BC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông